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NOMENCLATURE 

 

R   Rare earth element 

X   Halogen element 

Z   Interstitial (Endohedral atom) 

E   Main group element 

T   Transition metal element 

ROX   Rare earth metal oxide halide 

R2O3   Rare earth metal(III) oxide 

CN   Coordination number 

f. u.   Formula unit 

°C   Degree of Celsius 

K   Degree of Kelvin 

hr   Hour 

µ   Absorption coefficient 

SCXRD  Single crystal X-ray diffraction 

PXRD   Powder X-ray diffraction 

SEM   Scanning electron microscopy 

EDS   Energy dispersive X-ray spectroscopy 

SQUID Superconducting Quantum Interference Device 
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ABSTRACT  

 

Our research efforts have focused on the investigation of novel intermetallic compounds 

containing transition metals with rare earth elements, specifically cobalt and platinum with 

praseodymium. The Co/Pr and Pt/Pr phase diagrams have been well explored. However, recent 

work has shown the existence of new binaries within these systems that are not present within 

the known phase diagrams. The binary Pt3Pr4 crystallizes in a new monoclinic structure type 

with six crystallographically independent Pt positions. Within the Co/Pr system, Co7Pr17 (cubic) 

was characterized to crystallize in another new structure type consisting of eight and nine 

coordinated Co atoms. Most recently our investigation of the binary systems, including Pt1.99Pr3 

as well as the ternary Pt/Pr/Sn and Co/Pr/Sn systems have yielded several new compounds 

including new structure types.  

Through exploration of the binary Pt/Pr system using NaCl flux, single crystals of 

Pt1.99Pr3 were obtained. Pt1.99Pr3 adopts the Ga2Gd3 structure type where Pt atoms are 

coordinated by Pr atoms in chains of alternating cubes and square antiprism chains along the c 

axis. The remaining Pr positions form trigonal prisms and distorted tetrahedra around Pt atoms in 

1:2 chains. The reported structure found for Pt2Pr3 is that of hexagonal Ni2Ho3. Subsequent 

loading of Pt2Pr3 in a Sn flux yielded two new ternaries in the Pt/Pr/Sn system: Single crystal 

analysis identified Pr4Pt12Sn25 and Pr3Pt4Sn6. The first is isostructural to Gd3Ni8Sn16 while the 

latter is a new ternary in the RE3T4E6 family (R = rare earth; T = Pt, Pd; E = Ge, Al, Sn, Si) 

where Pt and Sn form hexagonal and pentagonal nets. 

 Further investigation into the R3T4E6 family led to the characterization of four new 

compounds within the family for T = Pt and R = La, Ce, Pr, and Nd. The neodymium compound 

forms a new high-temperature modification of the parent R3T4E6 structure type (Pr3Pt4Ge6) 
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where Pt atoms are seven coordinate in polyhedra that share edges and vertices. This new 

R3Pt4Sn6 structure type is also orthorhombic with a slightly smaller volume, approximately 3%. 

Interestingly, Pr3Pt4Sn6 forms both modifications as well, while La and Ce do not exhibit the 

high temperature modification.  

Single crystal X-ray diffraction analysis of Co/Pr samples containing Sn as a flux 

revealed CoSn3Pr1-x (x = 0.04) and Co2–xSn7Pr3 (x = 0.78), adding two new ternaries to the Co-

Sn-Pr system. In the first, trigonal prisms of Sn around the Co atoms form vertex-sharing 

networks. The latter structure contains Co atoms surrounded by square prisms of Sn connected to 

{PrSn12} cuboctahedra to form slabs.  
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CHAPTER 1. INTRODUCTION  

Metal-rich halides has been were first discovered in the 1960s by Corbett’s group, 

beginning with the discovery of gadolinium sesquichloride, Gd2Cl3.1 This structure contains 

gadolinium octahedra, {Gd6}, connected via common trans-edges to infinite chains, 

{Gd4/2Gd2/1}, surrounded by halide ligands in the {Gd6}Cl8 fashion.3,4  

 

 

 

Figure 1. Side chain of Gd2Cl3 where black atoms are Gd. From Corbett, J.D. 2006.2 

 The many cluster complex halides that have since been synthesized differ from Gd2Cl3 in 

that either non- or semi-metal, E, or metal atom , T, occupy the octahedral, known as an 

interstitial atom, Z, which allows for phase stabilization. 5-7 

 Cluster complex halides, {ZzRr}Xx type,(R = rare-earth element; X = halide) are known 

with z, i.e. the coordination number (CN) of the endohedral atom ranging from 3-6 for smaller 

atoms like E = B, C, N, O and 6-8 for  larger atoms like T = Os (and many other transition metal 

atoms).6 Oligomers, chains, double chains, layers and finally three-dimensional structures form 

from condensation of clusters by face and edge sharing ultimately ‘kicking off’ the halide atoms 

and forming polar intermetallics. 5-7  
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 During the investigation of cluster complex halides with platinum as the endohedral 

atom, the Pt/Pr/X systems (X = Cl, Br, I) were studied. At the time no cluster complex chloride 

with Pt and Pr were know, however {PtPr6}I12Pr8 and {PtPr3}I3
9 and, {PtPr3}Br3,10 were 

reported. As the electronegativity of the halide increases cluster complex halide and intermetallic 

and salt compete to form. The intermetallic {Pt3Pr4} was obtained. The most recent phase 

diagram11 (1990) does not contain the Pt3Pr4 phase but reports seven binary Pt/Pr phases 

including Pt3Pr7, Pt2Pr3 (incongruently melting at 1340°C), PtPr (congruently melting out of a 

high-temperature modification at 1800°C), and the platinum-rich phases Pt2Pr and Pt5Pr.
6  

 There is potential for many types of fluxes as observed when Pt3Pr4 formed from a melt 

of Pr, Pt, and PrCl3, the last apparently working as the flux. In the last decade, much research has 

focused on flux synthesis methods as a means to lower reaction temperatures.12 In the case of 

cobalt and platinum rare-earth binaries reaction temperatures in excess of 1500⁰C are required. 

Typical flux syntheses involve the addition of low melting metals, often tin or a salt (e.g. NaCl).  

 Use of NaCl and tin fluxes resulted in the formation of a new modification of Pt2Pr3 and a 

series of ternary Pt/Sn/Pr intermetallics. A reactive tin flux formed three new phases within the 

ternary Pt/Sn/Pr system, Pt4Sn6Pr3, Pt4Sn6Pr2.91, Pt12Sn24Pr4.84, in which only one ternary phase 

has been reported, PtSnPr with the SiTiNi type of structure.14 The first two are members of a the 

family T4E6R3 (T = transition metal; E = p-block main group metal or metalloid; R = rare earth 

metal) with now seven known structure types: monoclinic Pt4Ge6Y3 (P21/m)14 and the disordered 

variant Pt4Yb3Si5.7 (P21/m)16 as well as five orthorhombic structures, slightly disordered 

Pt4Ge6Ce3 (Cmcm),17 Pt4Ge6Pr3 (Pnma, R = Pr–Dy),18 Pd4Sn6Ce3 (Pnma, R = La-Pr),19 Pt4Al6Ce3 

(Pnma)20, and Pt4Sn6Pr3-x (Pnma, R = Pr).13 These structures are made up of stacked pentagonal 

and hexagonal nets of mixed Sn and Pt atoms encapsulating the R atoms. 
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 The newly synthesized series Pt4Sn6R3, R = La–Nd crystallize in the Pt4Ge6R3 type of 

structure (R = Pr–Dy) with Pr and Nd compounds forming a high temperature modification with 

reduced rare-earth content and clear structural differences. 

 

    
Figure 2. Ternary composition diagram of the system Pt/Sn/Pr 

 
Another intermetallic was obtained as a minor phase from a melt of PrBr3:Pr:Co = 1:2:1 

molar mixture. Nine intermetallics are reported for this system: CoPr3 (25 mol% Co), 

Co2Pr5 (28.6), Co1.7Pr2 (45.9), Co2Pr (66.7), Co3Pr (75), Co7Pr2 (77.8), Co19Pr5 (79.2), 

Co5Pr (83.3), and Co17Pr2 (89.5).21 The new Co7Pr17 binary Co/Pr intermetallic is thought to be 

either nonexistent in thermodynamic equilibrium,22,23 or obscured in the phase diagram as it is 

very close in composition to Co2Pr5 (28.6 mol% Co). Fluxes of NaCl and metallic Sn were also 

investigated for this system resulting in two new ternary Co/Sn/Pr intermetallics, CoSn3Pr1–x (x = 

0.044), Co2–xSn7Pr3 (x = 0.782).  

CoSn3Pr1-x (x = 0.04) crystallizes in the RuSn3La type exhibiting trigonal-prismatic 

{CoSn6} clusters and {Pr1Sn12} icosahedra while square pyramidal {CoSn5} clusters and 

{PrSn12} cuboctahedra highlight the crystal structure of Co2–xSn7Pr3 (Ni2–xSn7–yCe3 type). This 

dissertation focuses on the investigation of these structures within the Co or Pt and Pr binary and 
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Co or Pt with Pr and Sn ternary systems using a variety of fluxes as well as arc melting synthesis 

techniques. 

 

    
Figure 3. Ternary composition diagram of the Co/Sn/Pr system. Six compounds are reported in 
this system: Co8Sn4Pr3 = CoSn0.5Pr0.375,24 Co57Sn112Pr117 = CoSn1.96Pr2.05,25,26 Co4Sn13Pr3 = 
CoSn3.25Pr0.75,27 CoSn4Pr2,28 Co3Sn14Pr3 = CoSn4.67Pr,29 and Co0.33Sn2Pr = CoSn6Pr3.30 
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CHAPTER 2. EXPERIMENTAL TECHNIQUES  

Synthesis 

Starting materials of rare earth metals, transition metals (Pt, 99.9%; Co, 99.9%) and Sn 

(99.9%), were provided by Materials Preparation Center, U.S. DOE Ames Laboratory and stored 

in an argon-filled glovebox (MBraun Labmaster dp) Sample materials were weighed within 

+0.0005g inside a glovebox where they were then placed inside tantalum ampules or transported 

to another glovebox for arc melting. Samples ranged from 250mg-500mg. Due to the high 

melting points of the elements (822°C-1772°C), PrCl3, NaCl, or Sn was used as a flux. Tantalum 

ampules were then evacuated and welded closed under argon. Ampules were then enclosed 

inside of evacuated fused silica tubes [Figure 4]. 

               
Figure 4. Tantalum ampule sealed in fused silica, left. Arc melted samples, right. 
 

The rare earth metal halide, PrCl3, was synthesized via the ammonium-halide route for 

use as a starting material.31 The following reaction equation describes the synthesis of PrCl3. 

 

Pr2O3 + 6 HCl + 6 NH4Cl → 2 (NH4)3PrCl6 + 3 H2O 

2 (NH4)3PrCl6 → 6 NH4Cl + 2 PrCl3 

 

Concentrated HCl was added to stoichiometric ratios of the rare earth metal oxide Pr2O3. 

The water was evaporated off and the ammonium halide was decomposed using special 
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decomposition equipment [Figure 5] by heating to 250°C quickly then to 350°C at a rate of 

10°C/hr where it was held for 8 hours. The final product was confirmed by PXRD. 

                  
Figure 5. Schlenk line, left. Decomposition apparatus in furnace, right. 
 

Alternatively, arc welding was used to melt samples. Weighed samples were placed on a 

copper hearth cleaned with diluted nitric acid and ethanol then arc melted with a tantalum 

electrode [FIGURE 6]. Melted beads were turned and re-melted three times to ensure 

homogeneity. Arc melted samples were wrapped in tantalum foil then sealed in evacuated fused 

silica before heating. 

Heating treatments varied depending on the elements and flux used, and are detailed 

within the chapters. A typical heat treatment included placing the sealed sample in the tube 

furnace [FIGURE 6] (Mellen) with a programmer (Eurotherm) set to raise the temperature 

500°C/hr until a temperature above the melting point of the lowest melting element. Temperature 

was held for 3-72 hours followed by either a quench or slow cooling at a rate of 10°C/hr to an 

annealing temperature.  

Structure analysis 

Samples were crushed and a portion ground for powder X-ray diffraction (PXRD) 

analysis (STOE STADI P diffractometer (STOE image plate, Cu Kα1; λ = 1.54059 Å))32 or a 

Guinier X-ray camera detector (graphite monochromated Cu Kα1 radiation; Si as an internal 
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standard, a = 5.4308(1) Å))33. [FIGURE 4] Powder was placed on greased Mylar© sheets set 

between Al rings. For air sensitive samples an airtight sample holder was used. Data were 

analyzed using the WinXPow 3.0625 and LAZY PULVERIX software packages. Sample 

compositions were confirmed by scanning electron microscopy (SEM) equipped with electron 

microprobe (Energy Dispersive X-ray analysis, EDS). A Leica Cambridge 360 microscope, 

equipped with an Oxford X-Max 20 analyzer, was used with Oxford Aztec software, utilizing an 

extra high tension voltage of 20.0 kV and probe current 220 pA. EDS analyses were performed 

on at least three areas to (counting time of 60 sec) approximate atomic percentages for 

comparison and corroboration with single crystal refinement data. 

                 
Figure 6. Mellen tube furnace with Eurotherm temperature control, left, and arc welder, right. 

 
Single crystals were selected from crushed bulk samples and affixed to glass fibers with 

grease. Crystals were tested at room temperature on either a Bruker APEX CCD diffractometer 

[FIGURE 7] or a 6 Bruker D8 VENTURE diffractometer (both with Mo Kα radiation; λ = 

0.71073 Å) utilizing the APEX 2 and APEX 3 software suites, respectively, for data collection, 

integration, polarization, and empirical absorption correction.34,35 Scans typically covered the 2θ 

range of ~5-63°. Structure refinement of atomic position, mixed side occupancy, and anisotropic 

displacement parameters was carried out with SHELXTL.36 
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Figure 7. Bruker APEX CCD diffractometer, left, and STOE STADI P diffractometer, right. 

 
 

Physical Property Measurements 
 

Phase-pure samples where tested for magnetic transitions. DC magnetic data was collected 

using a Quantum Design MPMS (Magnetic Property Measurement System) SQUID 

(Superconducting Quantum Interference Device) magnetometer. Approximately 20mg of powder 

was placed in a gas-tight fused silica sample holder, place inside the system and first tested in a DC 

field of 1 kOe over a temperature range of 2-250 or 300 K in order to determine critical temperature 

locations. 
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CHAPTER 3. FROM THE NON-EXISTENT POLAR INTERMETALLIC Pt3Pr4 VIA   
Pt2-XPr3 TO NOVEL Pt/Sn/Pr TERNARIES 

 
Melissa L. Rhodehouse,†,‡ Thomas Bell,§ Volodymyr Smetana,‡,ǁ Anja-Verena 

Mudring,‡,ǁ,┴ and Gerd H. Meyer,*,†,‡ § 

 
†Department of Chemistry, Iowa State University, Ames, IA, 50011, USA 
‡Ames Laboratory, USDOE, Iowa State University, Ames, IA 50011, USA 
§Department of Chemistry, Universität zu Köln, Greinstraße 6, 50939 Köln, Germany 
ǁDepartment of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16 C, 10691 
Stockholm, Sweden 
┴Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011, USA 

Abstract 

Although the Pt–Pr phase diagram has been explored well, recent work on rare-earth 

metal cluster halides with endohedral transition metal atoms has provided a new binary 

intermetallic that is non-existent in the known phase diagram: The binary Pt3Pr4 (1) crystallizes 

in a new structure type (mP56, P21/c, a = 12.353(2) Å, b = 7.4837(9) Å, c = 17.279(2) Å, β = 

118.003(7)˚, Z = 8) with six crystallographically independent Pt as well as eight Pr positions. 

The subsequent detailed investigation has led to another previously unreported, binary phase 

with the Ga2Gd3 structure type, Pt2–xPr3 (2, tI80, I4/mcm, a = 11.931(9) Å, c = 14.45(1) Å, Z = 

16) that is practically overlapping with the rhombohedral Pt2Pr3 existing in the phase diagram. 

Application of different tin containing fluxes to reproduce the newly detected phases brought 

about two almost iso-compositional ternary compounds with Sn, Pt4Sn6Pr2.91 (3) and Pt4Sn6Pr3 

(4), as well as Pt12Sn24Pr4.84 (5). (3) is a representative of the Pt4Ge6Ce3 type (oP52, Pnma, a = 

7.2863(3) Å, b = 4.4909(2) Å, c = 35.114(2) Å) while (4) represents a new variant of the prolific 

T4E6R3 family (T = transition metal, E = main group (semi-)metal, R = rare earth metal; 

Pt4Sn6Pr3: oP52, Pnma, a = 27.623(1) Å, b = 4.5958(2) Å, c = 9.3499(5) Å). Pt12Sn24Pr5-x (5) 

crystallizes as a variant of the Ni8Sn16Gd3 type (cI82, Im-3, a = 12.274(1) Å, Z = 2). Electronic 
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structure calculations provide hints on the origin of the structural changes (pseudo-

polymorphism) for PtxPr3 with x = 1.97 and 2.00, respectively) and reveal that heteroatomic Pt–

Pr bonding strongly dominates in both binaries while the addition of the reactive metal tin leads 

to dominating Pt-Sn bonding interactions in the ternaries; Pt–Pt bonding interactions are strong 

but represent a minority in the binaries and are not present at all in the ternaries. 

Figure A. The discovery of the non-existent intermetallic Pt3Pr4 from a PrCl3 melt inspired a 
search for lower-temperature routes for binary and ternary intermetallics. Pt1.97Pr4 was obtained 

from a NaCl melt. A tin flux yielded three new Pt/Sn/Pr phases in the otherwise, except for 
PtSnPr, empty ternary phase field. The reactive tin flux substitutes the pure {PtPrx} clusters in 
the binaries by {PtSnyPrx} clusters, all of which are connected to three-dimensional structures.  
 

Introduction 

A plethora of metal-rich halides has been synthesized and characterized in the aftermath 

of the first discovery of gadolinium sesquichloride, Gd2Cl3, in the 1960s.1 Its crystal structure is 

made up of gadolinium octahedra, {Gd6} clusters, connected via common trans-edges to infinite 

chains, {Gd4/2Gd2/1}, surrounded by halide ligands in the {Gd6}Cl8 fashion.2,3 To the best of our 

knowledge, the {Gd6} octahedra are empty, in contrast to almost all the other known cluster 

complex halides.4-6 These afford an endohedral (interstitial) atom Z, either non- or semi-metal (Z 

= E) or metal atom (most importantly transition metal atom, Z = T) for heteroatom Z−R bonding 
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which is critical for phase stabilization. So far, {ZzRr}Xx type compounds (R = rare-earth 

element; X = halide) are known with r, i.e. the coordination number (CN) of the endohedral 

atom, ranging from 3 to 8. Smaller atoms like E = B, C, N, O afford smaller CN’s (3−6),  while 

larger atoms like T = Os (and many other transition metal atoms) demand CNs of 6 to 8.5 

Bonding in these cluster complex halides {ZzRr}Xx is predominantly a symbiosis of polar, 

heteroatomic Z─R (intermetallic-like, multi-center covalent) and R─X (salt-like, ionic) character. 

Increasing cluster condensation pushes isolated clusters into oligomers, chains, double chains, 

then layers and, finally, three-dimensional structures.4-6 Ultimate cluster condensation, at which 

end all the halide ligands are eliminated, constitutes polar intermetallics. Viewing at transition-

metal (T)/rare-earth metal (R) intermetallics alone, the T atoms always have higher electron 

affinities (or electronegativities) than the R atoms, especially when it comes to the heavier 5d 

metals as from Os through Au.  

In the pursuit of complementing our knowledge of cluster complex halides with platinum 

as the endohedral atom, we have also investigated the Pt/Pr/X systems (X = Cl, Br, I). Hitherto, 

there were only the iodides {PtPr6}I12Pr7 and {PtPr3}I3
8 as well as the corresponding bromide, 

{PtPr3}Br3,9 known, no cluster complex chloride with Pt and Pr. When the electronegativity of 

the halide increases, there is an increasing competition of cluster complex halide versus 

intermetallic and salt. When {PtPr3}Cl3 was targeted, the intermetallic {Pt3Pr4} as well as 

remaining PrCl3 was obtained, the latter apparently working as a flux for crystal growth. 

Although the system Pt/Pr seems to have been investigated thoroughly,10 the new Pt3Pr4 does not 

exist in the phase diagram. Last modified in 1990, it presents seven binary Pt/Pr phases, Pt3Pr7, 

Pt2Pr3 (incongruently melting at 1340°C), PtPr (congruently melting out of a high-temperature 

modification at 1800°C), and the platinum-rich phases Pt2Pr and Pt5Pr.
5  
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Other fluxes, such as sodium chloride instead of PrCl3 or tin melts, resulted in the 

formation of what might be considered as a new modification of Pt2Pr3 and a number of ternary 

Pt/Sn/Pr intermetallics. 

Experimental section 

Synthesis. Starting materials were Pt beads (99.9%), Pr and Sn pieces (99.9%), and NaCl (99.9% 

purity). NaCl was dried in an oven at 80˚C overnight before placing inside an argon-filled 

glovebox. All samples, between 250-500 mg, were weighed and loaded into tantalum ampules 

inside an argon-filled glovebox. Pt/Pr binary samples were loaded with either NaCl or Sn 

(approx. 250 mg) as a flux. The NaCl excess could be removed with water. Ampules were sealed 

under argon with an He arc, followed by sealing in evacuated silica tubes with the aid of an 

H2/O2 torch. Samples were placed in a furnace at 1000˚C for 24 hours followed by slow cooling 

(-20˚C⋅hr–1) to 850˚C or 700˚C for NaCl and Sn flux samples, respectively, and annealed for 72 

hours. 

Pt3Pr4 (1) single crystals were grown from a melt of Pt, Pr, and PrCl3 in a 1:3:3 ratio. 

PrCl3 was synthesized via the ammonium chloride route from the respective oxide.11,12 The 

reactants were sealed in Ta ampules as described above, then heated to 1050˚C at a rate of 

80˚C⋅hr–1 and held there for one week. The sample was cooled at a rate of -1˚C⋅hr–1 until 500˚C, 

followed by a rate of -10 ˚C⋅hr–1 until room temperature was reached. 

Pt1.97–1.99Pr3 (2). The starting composition of Pt3Pr4 was weighed and loaded according to 

the above indicated method with NaCl as a flux. The resulting product was identified via powder 

X-ray diffraction to be multiphase containing also PtPr or Pt3Pr7. Small crystals of Pt1.97Pr3 were 

selected and characterized from the same sample. Additional crystals of Pt1.99Pr3 were detected in 

arc-melted samples of the same starting composition, Pt3Pr4. For comparison purposes, Pt2Pr3 
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was loaded into a tantalum ampule with a NaCl flux. The sample was sealed and heated 

according to the same scheme. 

Pt4Sn6Pr3-x (3, 4), Pt12Sn25Pr4 (5). A variety of stoichiometric loadings of Pt and Pr with 

Sn as a flux (150 mg) and NaCl (250 mg) as well, were weighed and placed inside tantalum 

tubes. Samples were sealed under the same conditions and placed in a tube furnace following the 

heating profile described above. (3) has been detected in the samples annealed at higher 

temperatures.  

Structure analysis. Powder and single crystal X-ray diffraction were used to characterize 

products. Samples were crushed in air (as it was detected that even the ternaries are resistant to 

oxidation or hydrolysis in laboratory environment for extended periods) and a portion of the 

sample ground to a fine powder for phase analysis. Powders were sandwiched between greased 

Mylar sheets housed by an aluminum holder. Data was gathered on a STOE STADI P image 

plate diffractometer (Cu-Kα1 radiation, λ = 1.54178 Å; Si external standard, a = 5.4308(1) Å) 

and analyzed using WinXPow software.13 Single crystal X-ray diffraction was performed on a 

Bruker APEX CCD and Bruker VENTURE diffractometer (both Mo-Kα radiation, λ = 0.71073 

Å). The raw frame data were collected using the Bruker APEX3 program,14 while the frames 

were integrated with the Bruker SAINT15 software package using a narrow-frame algorithm 

integration of the data and were corrected for absorption effects using the multi-scan method 

(SADABS).16 Initial models of the crystal structures were first obtained with the program 

SHELXT-201417 and refined using the program SHELXL-201418 within the APEX3 software 

package. All positions were refined anisotropically. Refinement details and structural parameters 

can be found in Tables 1–4.  
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Electronic structure calculations. DFT-based electronic structure calculations for Pt3Pr4, 

slightly idealized tetragonal Pt2Pr3 (with the fully occupied Pt4 site) and Pt4Sn6Pr3 were 

accomplished according to the linear muffin–tin–orbital (LMTO) method in the atomic sphere 

approximation (ASA).19,20 The Wigner–Seitz radii were automatically generated and empty 

spheres were included for better approximation of full potentials. Basis sets of Pr 6s, (6p), 5d and 

Pt 6s, 6p, 5d, (4f) and Sn 5s, 5p, (5d), (4f) were employed. 6p orbitals of Pr and 4f orbitals of Pt 

were downfolded as well as 5d and 4f orbitals of Sn.21 Chemical bonding analysis was performed 

based on the crystal orbital Hamilton populations (COHP).22 Total energy values for both 

modifications of Pt2Pr3 were obtained after full structural optimizations in non-magnetic regime 

using the projector-augmented wave method23 and PBE–GGA potentials24 in the VASP 

package.25-29 Full structural optimizations (cell volume, shape and atomic coordinates) have been 

performed for both models with the convergence criteria 1 µeV. 8 × 8 × 8 k-point mesh was used 

to sample the first Brillouin zones for reciprocal space integrations with 500 eV energy cutoff. 

Results and discussion 

Two new praseodymium rich binary platinides, Pt3Pr4 (1, 42.9 mol% Pt) and Pt1.97Pr3 (2, 

39.6 mol% Pt), have been observed during the exploration of rare-earth metal cluster complex 

halides with an endohedral transition metal atom and a subsequent more detailed analysis of the 

praseodymium rich side of the Pt/Pr system. Both compounds appear to have limited stability 

and can be obtained as minor products, so far only using flux methods, from excess PrCl3 and 

NaCl melts, respectively. In an attempt to reproduce Pt3Pr4, stoichiometric loadings of the target 

compound were reacted, resulting, except for crystals of the neighboring phases PtPr and Pt3Pr7, 

in single crystals of a minor phase, Pt1.97Pr3. The stoichiometric Pt2Pr3, known since the 1970s,30 

has not been observed under these conditions at the investigated temperatures, suggesting 
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different stability ranges for both “polymorphs”. Although the new phase exhibits a minor 

homogeneity range, no crystal has yet been detected with all Pt positions fully occupied.	

Subsequent loading of Pt2Pr3 in a tin flux yielded three new ternaries in the Pt/Sn/Pr 

system. Single crystal X-ray diffraction analysis identified Pt12Sn25Pr4 (5) and Pt4Sn6Pr3 (4) with 

29.2 and 30.8 mol% Pt, respectively. These are new representatives of the Ni8Sn16Gd3 (= 

Ni12Sn24Gd4.5) structure type31 and of the T4E6R3 family (T = Pt, Pd; R = rare earth element; E = 

Ge, Al, Sn, Si),32-37 respectively. Throughout this family, which contains six known structure 

types, the transition and main group metal/metalloids exhibit complex polyanionic T-E nets 

around the R atoms forming tunnels along various directions. 	

Stoichiometric loadings of Pt4Sn6Pr3 (4) with and without NaCl flux resulted in two 

different products, one isostructural with Pt4Ge6Pr3, the other, Pt4Sn6Pr2.91 (3) with a new 

structure type. It appears as if Pt4Sn6Pr2.91 were a somewhat disordered high-temperature 

modification of Pt4Ge6Pr3. 

Crystal Structures. Pt1.97Pr3 (2, tI80, I4/mcm, a = 11.9444(7) Å, c = 14.488(1) Å) belongs to 

the Ga2Gd3 structure type38 and is its first representative without a main group element. There are 

four crystallographically independent Pt positions in the structure of Pt1.97Pr3, as well as three Pr 

positions. The crystal structure is best described in terms of columns built of {Pt1Pr8} clusters, 

i.e. square antiprisms with an endohedral Pt atom, and {Pt4Pr8} clusters which come along as 

square prisms sharing faces along the c axis (Figure 1). While columns of square antiprisms 

(SAP) and square prisms (SP, almost cubes) are observed in cluster complex halides such as 

{OsSc4}Cl4
39 and in the structurally related telluride {SiTa4}Te4

40 (only SAP) as well as in 

{Ir3Sc12}Br16 (ratio SAP:SP = 2:1) and {Os5Lu20}I24
41 (SAP:SP = 4:1), a ratio of SAP:SP = 1:1 

as in Pt1.97Pr3 is so far only known from polar intermetallics, i.e., Ga2Gd3 type. The space in 
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between the PtPr8/2 columns is filled by {Pt2Pr6} trigonal prisms (equatorially capped by three 

additional Pr atoms in the second coordination sphere) and more complex {Pt3Pr8} clusters with 

the shape of strongly distorted tetragonal antiprisms or bicapped trigonal prisms (Figure 1a). The 

latter share tetragonal faces with identical units forming bicentric clusters.  

 

 

Figure 1. Coordination polyhedra and polyhedral packing in the crystal structure of Pt1.97Pr3. 
 

In Pt1.97Pr3, the Pt atoms correspond to the positions of the Ga atoms in the prototype 

Ga2Gd3 while Pr occupies the positions of Gd. However, despite containing only two elements, 

this compound exhibits one distinct Pt position (Pt4) which is under-occupied to only 89%, 

which brings the structure closer to that of InPt7Ce12,
42 with a fully occupied In position. 

Interestingly, the under-occupied Pt4 position centers the largest void. Although rather unusual, 

the partial occupation of that Pt position is indirectly indicated by slightly elongated thermal 

ellipsoids of the Pr3 atoms surrounding it. Pt4−Pr3 contacts, at 3.286(1) Å, are on the upper edge 

of the Pt−Pr bonding range in the structure and are even longer than the sum of their atomic radii 

(1.35 + 1.85 = 3.20 Å). Such longer contacts for the current position are rather typical throughout 

this structure type and are followed by the largest thermal ellipsoid for the 4c position (Pt4 in 

Pt1.97Pr3), while its partial occupation has never been observed before. Of course, one could 

argue that the under-occupied position according to Pt0.89Pt7Pr12 would rather be fully occupied 
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by a lighter and larger atom, for example an indium atom. However, indium metal was never 

near the experimental procedures and could not be detected by elemental analysis. 

Pt3Pr4 (1, mP56, P21/c, a = 12.353(2) Å, b = 7.4837(9) Å, c = 17.279(2) Å, β = 

118.003(7) °) crystallizes with the monoclinic crystal system in its own structure type (Figure 2). 

The entire structure can be described based on one polyhedron type, {PtPr8} clusters, with 

different degrees of distortion (Figure 2a). This cluster type includes six slightly different 

modifications of a tetragonal antiprism where one of the faces is not entirely planar or, 

alternatively, a bicapped trigonal prism similar to {Pt3Pr8} in Pt1.97Pr3 (above). Furthermore, due 

to significant distortions, the Pt5 and Pt6 coordination environments can more accurately be 

described as {PtPr7+1}, as some of the Pr positions are situated slightly beyond the first 

coordination sphere. All Pt positions in the structure are at pairwise interatomic distances 

(2.871−3.030 Å) meaning that {PtPr8} polyhedra share square faces to form dimers, {Pt2Pr12} 

(Figure 2b). These then share vertices, edges and faces with multiple similar neighboring units 

preventing clear separation of larger structural motifs and constructing a three-dimensional 

structure (Figure 2c). 

It is worth noting that the same, although higher symmetric {Pt2Pr12} cluster is the 

exclusive building unit in the crystal structure of the rhombohedral Pt2Pr3, the phase reported in 

the phase diagram.5 However, the building principles are different due to the higher Pr 

proportion. Even though the polyhedral packing is efficient, tetrahedral voids are present in the 

crystal structures of Pt3Pr4, whereas plenty of both tetrahedral and octahedral voids have been 

observed in Pt2Pr3 resulting in a less dense packing.  

Other examples of the T3R4 family include hexagonal Co3R4 for the smaller rare-earth 

elements, R = Gd-Lu and Y,43 cubic Th3P4 anti-type Rh3La4,44,45 and monoclinic Ru3Ce4.46 While 
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the cubic Th3P4 type of structure is totally unrelated, the other two contain similarly fused 

clusters based on {TR8} bicapped trigonal prisms. In contrast to the {Pt2} dumbbells as evident 

in Pt3Pr4, Co3R4 as well as Ru3Ce4 exhibit Pt tetramers and chains, respectively. Also, {TR8} 

clusters are not the exclusive building blocks in the latter, similar to Pt2−xPr3, where three 

different structural building units are present. 

 

 
Figure 2. Coordination polyhedra and polyhedral packing in the crystal structures of Pt3Pr4. 
 

The application of an obviously reactive flux to a mixture of platinum and 

praseodymium, a tin melt in the present case, results in ternary PtxSnyPrz phases. The only 

ternary intermetallic that has been reported in this particular system is the equiatomic PtSnPr, 

which adopts the TiNiSi type of structure at ambient pressure (NP-PtSnPr) and the ZrNiAl-type 

at 10.5 GPa (HP-PtSnPr).47,48 

On the other hand, ternary compounds containing a transition metal T, a rare-earth metal 

R, and a post-transition (main or p group) metal E, are numerous, including six structure types 

for the T4E6R3 family, of which the Pt4Ge6Ce3
30 type is highly prolific. Pt4Sn6Pr3 (4, oP52, Pnma, 
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a = 27.623(1) Å, b = 4.5958(2) Å, c = 9.3499(5) Å) seems to be the first tin containing example 

of that type. Pt4Sn6Pr2.91 (3, oP52, Pnma, a = 7.2863(3) Å, b = 4.4909(2) Å, c = 35.114(2) Å) 

appears to be a high temperature phase related to Pt4Sn6Pr3 crystallizing in its own structure with 

some disorder and under-occupation. 

 

 

 

 

 

 

 

 

 

 

Figure 3. Projections of parts of the crystal structures of Pt4Sn6Pr3 (left) and Pt4Sn6Pr2.91 (right) 
exhibiting different zig-zag chains of praseodymium atoms (blue) in both structures. 

Both phases, Pt4Sn6Pr3 and Pt4Sn6Pr2.91, may be described in terms of polyatomic 

networks of Pt and Sn atoms forming tunnels along [010] with encapsulated Pr atoms, see Figure 

3. Such structural motifs are quite common in cation poor Au polar intermetallics and are 

represented in a few different variants.49 Following this mode of description, basic building 

blocks in the crystal structure of Pt4Sn6Pr3 (Figure 3, left) are {PrPt7Sn9} and {PrPt6Sn9} clusters 

with CNs of 16 and 15, respectively.  Thus, cation, Pr3+, centered polyhedra run parallel anionic 

{PtSnx}z- 6/4/6 and 5/5/5 rings, respectively, along the b direction (Figure 4a). The mutual 
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location of the cation’s positions leads to larger non-trigonal (as a rule 5-vertex truncated 

hexagons) shared faces, and formation of one-side branched tunnels along the c axis.  

The situation in Pt4Sn6Pr2.91 is way more complex due to relocation of the cation’s 

positions and significant change of the anionic network (Figure 3, right). This compound 

contains elements of the tunnel structures observed in AAu2Ga2 or AAu3Ga2 (A = alkali 

metal),50,51 i.e. octagonal channels with disordered cations and zigzag cationic chains (Figure 

3b). Due to the disorder, Pr–Pr distances within these chains are in the range of 3.12–3.50 Å, 

significantly shorter compared with those in Pt4Sn6Pr3 (4.1 Å and longer). There is a larger 

proportion of the pentagonal tunnels while the hexagonal tunnels are substituted by larger 

nonlinear channels. In contrast to Pt4Sn6Pr3, the structure of Pt4Sn6Pr2.91 exhibits preferable 

tunnel motifs only along one direction (b); however, fused pentagonal units (Pr@5/4/5, Figure 

4c) form hexagonally shaped tunnels also along the a axis accommodating Pr zigzag chains. The 

octagonal channels can be described on the basis of zigzag Pr@4/7/4 units sharing large 

hexagonal faces with the building blocks of the other pentagonal tunnels Pr@5/7/5 and are 

therefore two side branched (Figs. 3b and 4c). Besides this fusion these structural elements are 

well separated from the identical ones and Pr@5/4/5 based tunnels sharing only smaller trigonal 

faces. Pr atoms inside octagonal tunnels are positionally disordered and the two different 

crystallographic sites are in fact not fully occupied in accordance with 2 and 5. The total 

occupation of both disordered Pr positions reaches 91% and is in line with the disorder in the Pr–

Pr zigzag chains that may lead to too short contacts (~2.81 Å). A large tunnel diameter together 

with big open faces leads to a large degree of freedom especially in the plane normal to the 

tunnel axis. Additionally, Pr3–Pr4 distances show a minor average shortening, 3.129(1) Å vs. 

3.204(4) Å in Pt1.97Pr3 that may serve as an extra proof for their partial occupation. 
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An alternative description of the structures of Pt4Sn6Pr3 and Pt4Sn6Pr2.91 starts with 

coordination polyhedra surrounding the most electronegative atom, platinum, as utilized above 

for Pt1.97Pr3 and Pt3Pr4. In Pt3Pr4, the Pt atoms are surrounded by eight Pr atoms with Pt−Pr 

distances of, on the average, 3.082 Å, close to the sum of the atomic radii of Pt and Pr, 3.20 Å. 

These are considerably longer (8.4%) than the Pt−Pr distances in {PtPr3}Br3
9 (2.842 Å) which is 

reasonable, because the CN of Pt in {PtPr3}Br3 is only 6, and, furthermore, polyhedra in the 

intermetallic Pt3Pr4 are not isolated but intensely connected. However, it should be noted that the 

shortest Pt−Pr distances in Pt3Pr4 are about 2.9 Å being comparable to those in {PtPr3}Br3. 

When moving from the binary Pt/Pr to the ternary Pt/Sn/Pr system, there is a completely 

new situation: platinum has by far the highest electron affinity (205.041(5) kJ/mol52 of all 

bonding partners and both  the smaller tin atoms (1.45 Å), with a [Kr]4d105s25p2 electron 

configuration, and the larger praseodymium atoms (1.85 Å), with a [Xe]6s25d14f2 configuration, 

compete for the closest coordination to the central platinum atom. Tin wins. The average Pt−Sn 

distance over all the four crystallographically independent {PtSn5} square pyramids (Figure 4) is 

2.66 Å, shorter than the sum of the atomic radii, 2.80 Å (with Pt−Sn distances ranging from 2.57 

to 2.80 Å). We may call this the first coordination sphere surrounding the central Pt atom. Pr 

atoms, then constitute a second coordination sphere with an overall average Pt−Pr distance of 

3.49 Å (ranging from 3.36 to 3.59 Å), considerably longer than the sum of the atomic radii, 3.20 

Å. Summing up both coordination spheres, the central Pt atoms are surrounded by 5+4 atoms, 

respectively.  

This situation is surprising because two sorts of atoms, Sn and Pr, of almost the same 

electron affinity (107.2984 kJ/mol53 and 93(3) kJ/mol)54 compete for the central atom, with the 

smaller atom (Sn, 1.45 Å) “winning” over the larger one (Pr, 1.85 Å). If we consider Pauling 
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electronegativities (Pt: 2.28, Sn: 1.96, Pr: 1.13),55 the central atom and the ones in the first 

coordination sphere are both negative, only the ones in the second sphere are considerably more 

positive. Thus, bonding interactions between Pt and Sn must be much stronger than between Pt 

and Pr; one may consider rather covalent interactions between Pt and Sn, while Pr acts more or 

less like a Pr3+ cation (see below). The {PtSn5} polyhedra are connected with each other as 

Figure 5 shows and, thus, form a negatively charged three-dimensional network with the positive 

praseodymium atoms in interstices, which brings us back to the above description of the 

structure where the most positive atom (Pr) is considered central. 

 

 

Figure 4. Coordination polyhedra around Pr and Pt atoms in the crystal structures of Pt4Sn6Pr3 
and Pt4Sn6Pr2.91. 
 

The situation in Pt4Sn6Pr2.91 is similar but more complex (Figures 4 and 5). For example, 

instead of only {PtSn5} pyramids, there are still {PtSn5} and two different {PtSn6} polyhedra 

present. The latter remind strongly of distorted octahedron and trigonal prism. The diversity of 

such polyhedra, unsurprisingly, leads to a more complex negative three-dimensional network, 
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which is, on the other hand, a reflection of the cation disorder. Although, the mutual orientation 

and connection of the {PtSnx} units reveal slabs of identical motifs for both structures. 

 

 

Figure 5. The packing of Pt@Snx in the crystal structure of Pt4Sn6Pr3 (a, {PtSn5}) and 
Pt4Sn6Pr2.91 (b, {PtSn5}, {PtSn6}). 

 
It is interesting to note that despite significant structural changes both phases, which may 

be regarded as pseudo-polymorphs, have nearly the same unit cell volume and number of 

positions per atom type. The number of coincidences includes also coordination polyhedra of Pt 

positions, tricapped trigonal prisms {Pt(Pr,Sn)9} in both structures in analogy with {PtPr8Pt} in 

Pt3Pr4 and Pt2-xPr3; however, Pr atoms are located in the second coordination sphere of Pt. 

Therefore, the coordination polyhedra around Pt are best described as slightly distorted Sn square 

pyramids for all positions in Pt4Sn6Pr3 (Figure 4b) and significantly distorted Sn square 

pyramids, trigonal prisms and octahedra in Pt4Sn6Pr2.91 (Figure 4d). From this point of view the 

crystal structure of Pt4Sn6Pr3 consists strictly of various 2D and 1D units of the {Pt@Sn5} 
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pyramids sharing edges within a unit and vertices between the units. Due to complexity, it is hard 

to separate such units in the crystal structure of Pt4Sn6Pr2.91, while the building principles still 

remain identical – edge and vertex sharing polyhedra. No short Pt–Pt contacts are detected in any 

of the ternary compounds. On the other hand, various modification of the present structural 

motifs observed in both structures are quite common in Ae–Au–Tr systems (Ae = alkaline-earth 

metal, Tr = triel metals),56-58 while exactly the same units (Figure 4a and c) have never been 

reported in Au polar intermetallics.49 

Pt12Sn24Pr4.84 (5) crystallizes in the Ni12Sn24La4.87 structure type59 and belongs to the 

Gd3Ni8Sn16 (= Ni12Sn24Gd4.5) structure family.31 The most mysterious feature of that structure 

family, crystallizing with space group Im-3, is the peculiar occupation of the special position 2a 

in the center and the origin of the unit cell, (Figure 6a). Even though the position can ideally be 

refined as fully occupied with Sn, a number of hints suggest that this is actually partially 

occupied by Pr. Several compounds have been published with different rare-earth metals (R)60 

claiming all possible occupation options from fully occupied tin through mixed occupancies of R 

and Sn to partially occupied by R. With an occupation of 0.84 by Pr, the number of electrons 

would be just the same as tin’s atomic number. A significant argument for the 2a position to be 

occupied with the rare earth element comes from the closely related structure of EuRuSn3,61 

where the presence of two inequivalent Eu positions has been confirmed by means of Mössbauer 

spectroscopy. 
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Figure 6. Pt12Sn24Pr4.84: Projection of the crystal structure down [100] (a), {PrSn12Pt6} tetrakis-
cuboctahedra (b), {Pr0.84Sn12} icosahedra (c), empty tetrakis-rhombic-prisms (d) and the packing 
of vertex-sharing {PtSn6} trigonal prisms. 

 
The crystal structure of 5 may be described as a superpolyhedral variant of PtHg4

62 with 

{PtSn12}icosahedra taking the positions of Pt in PtHg4 and {PrSn12Pt6} tetrakis-cuboctahedra 

those of Hg. Such packing leaves plenty of voids centering each cell face and edge. The latter 

can be shown as strongly distorted icosahedra with offset poles along the fivefold axis, but more 

precisely they are Pt rhombic prisms tetracapped by Sn. This polyhedron also resembles the 

{Pt2Pr12} unit from both Pt3Pr4 and Pt2-xPr3, however without centering dumbbells. The 

{PrSn12Pt6} tetrakis-cuboctahedra can simply be presented as interpenetrating Pt6 octahedra and 

Sn12 cuboctahedra centered by Pr (Figure 6b), while the {PrSn12} icosahedra are slightly unusual 

showing a strong split of all Sn positions surrounding Pr. This results in a Pr–Sn distance range 

from 3.125 Å to 3.599 Å and serves as a proof that the center of the icosahedron is just partially 

occupied. The shortest distance occurs when the Pr atom is missing while the latter is close to the 

average Pr–Sn contact in the structure. Sn–Sn contacts within the icosahedron also vary from 2.8 

Å, which is the sum of their covalent radii, to almost 4 Å when the central Pr position is 

occupied. In analogy with the two previous compounds the structrue can also be presented on the 

basis of {PtSnx} polyhedra (Figure 6e). In this case all Pt coordination polyhedra are trigonal 

prisms and a clear separation of the Pt environment is observed. Pt−Sn distances are in the range 
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2.60−2.77 Å, forming the first coordination sphere. The prisms are equatorially capped by two Pr 

and one Pt atoms with d(Pt−Pr) = 3.336(1) Å and d(Pt−Pt) = 4.105(1) Å, formally outside of the 

second coordination sphere. 

Electronic structures. For simple molecules, for Werner-type coordination compounds as well 

as for compounds containing metal clusters of both early and late transition metals, for 

intermetallics as Hume-Rothery or Zintl phases, a number of simple electron counting rules are 

widely used as a very first approximation to their electronic structures. For example, for 

K2[PtCl6] it would be the 18-electron rule, although not as decisive as for [Fe(CO)5] with strong 

ligands. For K4[{Nb6}Cl18] as well as for K2Zr[{CZr6}Cl18] there are 16 cluster-based electrons 

(CBEs) and for Cs2[{Mo6}Cl14] there are 24; these numbers are sometimes associated with eight 

three-center─two-electron and twelve two-center─two-electron bonds, respectively. For 

transition-metal centered rare-earth clusters in cluster-complex halides such as [{PtPr6}I12]Pr or 

{PtPr3}Br3 the number of CBE’s is 19 and 16, respectively. Roughly, the higher connected the 

clusters are―isolated in the former, edge-connected to chains in the latter―the lower the 

number of CBE’s needs to be because they are shared between the connected clusters. When the 

same calculation is carried out for Pt3Pr4 and Pt2Pr3, now scaled to one Pt atom per formula unit, 

the numbers are 14 and 14.5, respectively, smaller than for the example of {PtPr3}Br3 (16) 

because the {PtPr8} clusters are three-dimensionally connected. For the tin-rich ternaries 

Pt4Sn6Pr3 and Pt12Sn24Pr5, the numbers, scaled to one Pt per formula unit with 10 valence 

electrons for Pt, 4 for Sn and 3 for Pr, are 18.25 and 19.25, respectively. Thus, the addition of a 

main group element, although less electronegative than the halogens, brings us back to the 

situation of the more isolated cluster-complex halides.  
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Of course, band structure calculations, the density of states (DOS) as well as overlap 

populations, as COOP (crystal orbital overlap population) or COHP (crystal orbital Hamilton 

population), are a much better means to evaluate the electronic structure of intermetallics. 

Electronic structure calculations have been performed on Pt3Pr4 (1) for a slightly idealized model 

of Pt2.91Pr3 (2) assuming all Pt positions fully occupied, and for Pt4Sn6Pr3 (3). The DOS and 

associated PDOS (projected DOS) curves for the binaries (1) and (2) are qualitatively similar 

with broad regions extending 7 eV below the Fermi levels and large  Pt 5d contributions located 

at 4.5–2 eV below EF (Figure 7). The position of the latter allows the assignment of formally 

filled 5d orbitals in valence electron counting approaches and bonding schemes. Pt 6s states 

provide the largest contributions between –2 and –7 eV and dominate below –5 eV, though the 

contributions around EF are rather negligible. Such situations are considerably different from s-d 

intermetallics with Pt, Cs2Pt or Cs9Pt4H,63,64 but are rather typical for Pt polar intermetallics with 

active and post-transition metals.65-67 Pr 5d states dominate over 5p and 6s practically through 

the entire range. While Pr 5p and 6s states contribute to the DOS substantially in a region of 3–5 

eV below EF, their contributions at the Fermi level are rather insignificant. The sizable total DOS 

values at EF, 1.3 and 4.9 states/eV⋅f.u. for Pt2Pr3 and Pt3Pr4, respectively, indicate metallic 

character. The DOS curves of Pt2Pr3 reveal a narrow but very deep pseudogap at the Fermi level, 

whereas those for Pt3Pr4 are on a sharp local maximum. In that case the shift in the Fermi level 

from that of the experimental composition lowers the DOS values significantly which is 

specifically achieved by adding valence electrons, i.e. partial substitution of Pt with a p block 

element. Total energy calculations performed for two different modifications of Pt2Pr3 revealed a 

rather small difference of about 5 meV/f.u., or 80 meV/cell with preference for the rhombohedral 
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variant. This may provide a hint why Pt2-xPr3 cannot be obtained as a stoichiometric product in 

this structure type or it exists at higher temperatures only.  

Distances and bonding analysis. Heteroatomic bonding dominates quantitatively throughout all 

structures including both binaries and all ternaries. Such interactions have been intensively 

studied in the ternary A–T–E systems (A = active metal, T = late transition metal, and E = p block 

element), but still binary systems are an interesting field for research due to the enhanced role of 

cation–anion bonding. The particular feature that makes many platinum and gold systems 

remarkable derives from substantial relativistic contributions to its bonding, chemically 

established by both increased binding via the more penetrating 6s orbitals and the relative 

elevation of the 5d10 states into greater mixing with higher energy valence states. 

 

 
Figure 7. DOS and PDOS curves for the tetragonal Pt1.97Pr3 (left) and the monoclinic Pt3Pr4 
(right). 
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Figure 8. –COHP curves for selected interatomic interactions in the crystal structures of Pt2Pr3 
(left) and Pt3Pr4 (right). 

 

The electronegativity of Pt greatly exceeds that of the rare-earth elements, giving the 

more extreme polar distribution of Pr 5d. While some Pr states are certainly involved in bonding 

with Pt 5d at −2.0 to −4.5 eV, the effective oxidation of Pr affects the dislocation of some 5d 

states to higher energies similar to those observed in Au7Sn3R3.68  

Since the crystal structure of Pt3Pr4 exhibits basically variations of just one building unit 

based on Pt2 dumbbells in {Pt2Pr12}, the most representative bonding interactions within and 

between such units were analyzed. Pt–Pt distances are in the range of 2.871−3.030 Å and appear 

to be quite normal for polar intermetallics, though being slightly longer than twice the atomic 

radius (2.70 Å).69 The –COHP curve shows that the Pt2–Pt6 interaction is rather nonbonding at 

the Fermi level (Figure 8), while the –ICOHP (integrated COHP) value of 1.47 eV is still high. 

This allows us to consider these Pt–Pt contacts as bonding bridges for the cluster formation. Pr–

Pt interatomic distances are widely spread from 2.83 to 3.51 Å, whereas unique separations may 

reach 3.87 Å, though providing much lower contributions to the bonding patterns. Two selected 

contacts connecting both Pt atoms in a dumbbell Pr4–Pt1 (2.981 and 3.105 Å) are strongly 

bonding at EF and are highly populated: 0.82 and 0.69 eV/bond being practically inversely 
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proportional to their bond lengths. The shortest Pr–Pt contact in the structure, Pr4–Pt6 (2.839 Å) 

reveals the largest –ICOHP value of 0.98 eV/bond. This is due to the special location of that Pr 

position in between three Pr2 dumbbells. Since Pt–Pr contacts represent over 50% of all bonds in 

the structure their contribution to total bonding exceeds 90%. Pr–Pr separations in the structure 

cover the range from 3.51 to 4.07 Å with a small fraction reaching even 4.71 Å. The shortest 

ones usually connect more than one Pt2 dumbbell. Pr1–Pr4 contacts (3.506 Å) are also bonding 

at EF with a –ICOHP value of 0.11 eV, and due to their relatively large number are comparable 

with the Pt–Pt ones in the total bonding contributions. 

The bonding situation in Pt2–xPr3 is slightly different due to the diversity of the structural 

elements and connected with them a redistribution of bonding interactions. The only Pt–Pt 

bonding distances are observed between Pt positions within {Pt2Pr12} clusters identical to those 

in Pt3Pr4. These contacts are closer to the upper end of the Pt–Pt bonding spectrum (d(Pt3–Pt3) = 

2.978(2) Å) in Pt3Pr4 and are all identical due to the high symmetry of the crystal structure. The 

major part of the Pr–Pr contacts in the structure range from 3.57 to 4.07 Å, but not without 

exclusions. This compound reveals short Pr5–Pr5 distances of 3.204 Å, which are well below the 

sum of the atomic radii. These contacts, however, do not show any indication of cation–cation 

repulsion leading to antibonding interactions and reveal an –ICOHP value of 0.16 eV. 

Furthermore, this distance can be explained by steric factors due to low bond saturation. These 

Pr positions are surrounded by just four Pt atoms with only two having bonding distances to each 

of them. This number is even lower than the one observed in Na8Au10Ga7 for some Au–Ga 

contacts leading to their contraction well below the sum of the corresponding covalent radii.70 

On the other hand, this reduction was observed in all compounds throughout the Ga2Gd3 type.71 

Another extreme due to steric restrictions has been observed for some Pt–Pr contacts for Pt 
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positions inside of Pr8 tetragonal prisms (d(Pt3–Pt3) = 3.286 Å) with a major part of those bonds 

being located around 2.85–3.07 Å. All the discussed contacts reveal bonding interactions at the 

Fermi level (Figure 8) including Pt–Pt pairs, found to be nonbonding in Pt3Pr4. It is interesting to 

note that EF is located on the sharp slope for all interactions; removing up to 0.3 valence 

electrons per formula unit increases bonding interactions by a factor of up to two, while adding 

them leads to a significant decrease of the latter. This might serve as an extra explanation for the 

partial occupation of the Pt position. Quantitatively, the bonding contributions of different pairs 

do not differ significantly from those in Pt3Pr4, with the Pt–Pr component exceeding 90% of the 

total bonding, with the –ICOHP values for separate interactions ranging from 0.4 to 1.1 eV/bond. 

Pt–Pt contributions remain large but due to the limited number of contacts in the structure do not 

present any leading role. 

A comparison of the overlap populations in Pt2Pr3 and Pt4Sn6Pr3 (Figure 9) shows that Pt-

Sn bonding interactions become the most dominant, reflected in the coordination polyhedra 

{PtSn5} with their relatively short internuclear distances. Both Pt−Pr and Sn−Pr bonding 

interactions play a role but to a lesser degree. Homoatomic Sn-Sn bonding and antibonding are 

pretty much balanced.  

The cumulative integrated –COHP values (–ICOHPs) analysis (Table 5) for all 

interactions in Pt2Pr3 and Pt4Sn6Pr3 revealed interesting tendencies on moving from the binary to 

the ternary phase. The lowest contributing Pt–Pt interactions in Pt2Pr3 (5.7%) are completely 

missing in Pt4Sn6Pr3 and their role is taken over by Pr–Pr (1.9%) and Sn–Sn (5.7%) interactions. 

While heteroatomic Pt–Pr interactions in Pt2Pr3 provide over 85% in total, the Pt–Sn interactions 

in Pt4Sn6Pr3 provide just 48.1% but accompanied with two other heteroatomic pairs Sn–Pr and 

Pt–Pr they reach nearly the same 92%. Interestingly Pr–Pr interactions in both compounds differ 
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slightly, however, with the considerable larger number of contacts in the binary phase such 

interactions are definitely more populated in the ternary compound. 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. –COHP curves for different interatomic interactions in the crystal structures of Pt2Pr3 
(left) and Pt4Sn6Pr3 (right). 

Conclusions 

The central part of the Pt–Pr binary phase diagram has been augmented with two new 

representatives, Pt3Pr4 and Pt2–xPr3. Both compounds can be obtained through high temperature 

reactions in PrCl3 or NaCl fluxes, respectively, which apparently improve the quality of single 

crystal growth, especially for the low temperature phases. The application of a tin flux results in 

the formation of three new phases within the ternary Pt/Sn/Pr system, Pt4Sn6Pr3, Pt4Sn6Pr2.91, 

Pt12Sn24Pr4.84.  Both “modifications” of Pt4Sn6Pr3, most likely existing at low and high 

temperatures, exhibit significant structural varieties although they crystallize in the same space 

group (Pnma) and have nearly identical unit cell volumes, with the difference being caused 

mainly by the partial deficiency of some Pr positions. Electronic structure calculations reveal that 

both compounds are metallic in nature with Pt2-xPr3 showing a narrow but deep pseudogap at the 

Fermi level. The stoichiometric tetragonal Pt2Pr3 appears to have a higher total energy compared 
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to the rhombohedral Pt2Pr3 and is, therefore, thermodynamically unstable. Both electronic 

density of states and crystal orbital Hamilton populations (COHP) curves suggest that adding 

some valence electrons to the crystal structure of Pt3Pr4 decreases the DOS values and 

simultaneously enhances bonding interactions for all types of bonds. The overall bond 

populations in all structures are dominated by heteroatomic Pt–Pr interactions (in the binary 

Pt3Pr4 and Pt2–xPr3) as well as Pt-Sn (and to a lesser degree Pt-Pr and Sn-Pr interactions) in 

Pt4Sn6Pr3 while homoatomic bonding plays only a minor role. This is in striking consistency 

with the bonding schemes in rare-earth cluster complex halides with endohedral transition metal 

atoms, e.g. in {PtPr3}Br3 where Pt-Pr and Pr-Br bonding dominates. 



www.manaraa.com

 
 

 

34 

Table 1. Crystallographic details and refinement parameters for Pt1.97Pr3 and Pt3Pr4. 
Formula Pt1.97Pr3 Pt3Pr4 
Form. wt., g/mol 807.55 1148.91 
Space group, Z I4/mcm (no. 140), 16 P21/c (no. 14), 8 
a, Å 11.9444(7) 12.353(2) 
b, Å  7.4837(9) 
c, Å 14.488(1) 17.279(2) 
β, °  118.003(7) 
V, Å3 2067.0(3) 1410.4(3) 
Temperature, K 293(2) 293(2) 
Density (calculated), g/cm3 10.380 10.822 
Absorption coefficient, µ, mm-1 80.770 86.218 
F (000) 5294 3760 
θ range, ° 2.4 to 24.4 1.9 to 27.3 
Index ranges -12 < h < 13 -15 < h < 15 

 -13 < k < 13 -9 < k < 9 

 -16 < l < 16 -22 < l < 21 
Intensity data collected 6970 20998 
Number of independent reflections 482 [Rint = 0.1195] 3123 [Rint = 0.1503] 
Completeness, % 100 98.3 
Data/ Restraints/ Parameters 482/0/33 3123/0/128 
Goodness-of-fit (F2) 1.051 1.055 
R1, ωR2 [I0>2σ (I)] 0.0333; 0.0661 0.0560; 0.1326 
R1, ωR2 (all data) 0.0509; 0.0719 0.0725; 0.1428 
Largest diff. peak and hole [e/Å-3] 2.329 and – 1.842 3.060 and – 4.182 
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Table 2. Crystallographic details and refinement parameters for Pt4Sn6Pr3-x (x = 0, 0.09) and 
Pt12Sn24Pr4.84 
Formula Pt4Sn6Pr3 Pt4Sn6Pr2.91 Pt12Sn24Pr4.84 
Structure type Pt4Ge6Pr3 own La4.87Ni12Sn24 
Form. Wt., g/mol 1915.23 1902.55 5871.43 
Space group, Z Pnma (no. 62), 4 Pnma (no. 62), 4 Im-3 (no. 204), 2 
a, Å 27.623(1) 7.2863(3) 12.274(1) 
b, Å 4.5958(2) 4.4909(2)  
c, Å 9.3499(5) 35.114(2)  
V, Å3 1187.0(1) 1148.99(9) 1848.9(5) 
Density (calculated) [g/cm3] 10.717 10.998 10.547 
µ, mm-1 71.294 73.278 67.265 
F (000) 3156 3135 4843 
θ range, ° 2.3 to 33.2 2.3 to 27.5 2.3 to 30.0 

Index ranges 
−40 ≤ h ≤ 40 
–7 ≤ k ≤ 7 
−13 ≤ l ≤ 14 

−9 ≤ h ≤ 9 
–5 ≤ k ≤ 5 
−45 ≤ l ≤ 40 

−17 ≤ h ≤ 17 
–17 ≤ k ≤ 17 
−17 ≤ l ≤ 17 

Intensity data collected 22092 22001 20587 
No.of independent reflections 2380 [Rint = 0.0757] 1481 [Rint = 0.0548] 516 [Rint = 0.1045] 
Refinement method Full-matrix least-squares on F2 
Data/ Restraints/ Parameters 2380 / 0 / 80 1481 / 0 / 88 516/ 0/ 27 
Goodness-of-fit (F2) 1.050 1.079 1.129 
R1; ωR2 [I0>2σ (I)] 0.0373; 0.0545 0.0311; 0.0631 0.0192; 0.0465 
R1; ωR2 (all data) 0.0843; 0.0634 0.0411; 0.0654 0.0197; 0.0467 
Largest diff. peak and hole [e⋅Å-3] 3.577 and –4.413 4.146 and –4.306 1.685 and –1.066 
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Table 3. Atomic positions and equivalent thermal parameters of Pt1.97Pr3 and Pt3Pr4. 
Atomic parameters 

Atom Wyckoff site x y z Ueq 

Pt1.97Pr3 
Pt1 4a 0 0 ¼ 0.0222(6) 
Pt2 8h 0.6254(1) 0.1254(1) 0 0.0211(4) 
Pt3 16l 0.17488(7) 0.67488(7) 0.30377(8) 0.0247(4) 
Pt4* 4c 0 0 0 0.0320(11) 
Pr1 8g 0 ½ 0.13943(15) 0.0232(6) 
Pr2 8h 0.1737(1) 0.6737(1) 0 0.0264(6) 
Pr3 32m 0.0705(1) 0.2045(1) 0.14020(9) 0.0294(4) 

Pt3Pr4 
Pt1 4e 0.4029(1) 0.4527(2) 0.02239(8) 0.0302(3) 
Pt2 4e 0.0762(1) 0.8055(2) 0.29976(8) 0.0328(3) 
Pt3 4e 0.3043(1) 0.2009(2) 0.24252(8) 0.0292(3) 
Pt4 4e 0.0458(1) 0.1824(2) 0.49255(8) 0.0304(3) 
Pt5 4e 0.7013(1) 0.3291(2) 0.32874(9) 0.0350(3) 
Pt6 4e 0.2539(1) 0.5466(2) 0.4090(1) 0.0415(3) 
Pr1 4e 0.5476(1) 0.0131(2) 0.2825(1) 0.0256(3) 
Pr2 4e 0.2847(1) 0.1505(2) 0.0628(1) 0.0256(3) 
Pr3 4e 0.8098(1) 0.3419(2) 0.0003(1) 0.0246(3) 
Pr4 4e 0.6569(1) 0.3400(2) 0.1487(1) 0.0273(3) 
Pr5 4e 0.1534(1) 0.1951(2) 0.3462(1) 0.0293(4) 
Pr6 4e 0.0498(1) 0.0066(2) 0.1281(1) 0.0277(4) 
Pr7 4e 0.4716(1) 0.3190(2) 0.4219(1) 0.0276(4) 
Pr8 4e 0.1299(1) 0.5114(2) 0.1841(1) 0.0280(4) 

*site occupation factor, SOF = 0.893(9) 
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Table 4. Atomic positions, equivalent thermal parameters and site occupation factors (if other 
than 1.0) of Pt4Sn6Pr3, Pt4Sn6Pr2.91 and Pt12Sn24Pr4.84 

Atom Wyckoff 
site 

x y z Ueq SOF 
Pt4Sn6Pr3 

Pt1 4c 0.54385(2) ¼ 0.6296(1) 0.0074(1)  
Pt2 4c 0.18660(2) ¼ 0.1189(1) 0.0059(1)  
Pt3 4c 0.18654(2) ¼ 0.6309(1) 0.0061(1)  
Pt4 4c 0.05015(2) ¼ 0.3801(1) 0.0091(1)  
Pr1 4c 0.40665(2) ¼ 0.6146(2) 0.0086(2)  
Pr2 4c 0.40641(2) ¼ 0.1346(2) 0.0089(2)  
Pr3 4c 0.27999(2) ¼ 0.37531(9) 0.0058(1)  
Sn1 4c 0.00358(3) ¼ 0.1275(2) 0.0074(2)  
Sn2 4c 0.49826(3) ¼ 0.8792(2) 0.0075(2)  
Sn3 4c 0.28370(4) ¼ 0.0307(1) 0.0059(2)  
Sn4 4c 0.13746(3) ¼ 0.8744(2) 0.0077(2)  
Sn5 4c 0.28374(4) ¼ 0.7201(1) 0.0058(2)  
Sn6 4c 0.14329(3) ¼ 0.3738(2) 0.0121(2)  

Pt4Sn6Pr2.91 
Pt1 4c 0.38949(8) ¼ 0.21214(2) 0.0060(1)  
Pt2 4c 0.06991(9) ¼ 0.82986(2) 0.0062(2)  
Pt3 4c 0.13717(8) ¼ 0.41594(2) 0.0065(2)  
Pt4 4c 0.36766(9) ¼ 0.54420(2) 0.0081(2)  
Pr1 4c 0.3265(1) ¼ 0.76647(3) 0.0072(2)  
Pr2 4c 0.1570(1) ¼ 0.11697(3) 0.0120(2)  
Pr3 4c 0.3849(3) ¼ 0.00408(8) 0.0148(5) 0.44(1) 
Pr4 4c 0.3539(3) ¼ 0.02615(7) 0.0148(5) 0.47(1) 
Sn1 4c 0.1928(1) ¼ 0.67448(3) 0.0073(2)  
Sn2 4c 0.0105(1) ¼ 0.21256(3) 0.0057(2)  
Sn3 4c 0.1735(1) ¼ 0.34000(3) 0.0074(2)  
Sn4 4c 0.6513(1) ¼ 0.59574(3) 0.0062(2)  
Sn5 4c 0.4140(2) ¼ 0.46872(3) 0.0086(3)  
Sn6 4c 0.0656(4) ¼ 0.5897(2) 0.0104(8) 0.69(1) 
Sn7 4c 0.0533(9) ¼ 0.5759(3) 0.0104(8) 0.31(1) 

Pt12Sn24Pr4.84 
Pr1* 2a 0 0 0 0.0127(6) 0.84(1) 
Pr2 8c ¼ ¼ ¼ 0.0095(2)  
Pt1 24g 0 0.31828(2) 0.16722(2) 0.0072(1)  
Sn1 24g 0 0.37917(4) 0.37364(4) 0.0087(2)  
Sn2 24g 0 0.1286(1) 0.2635(2) 0.0134(3) 0.602(4) 
Sn3 24g 0 0.1133(2) 0.2280(3) 0.0134(3) 0.398(4) 
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Table 5. Bond length ranges and average −ICOHP values as well as total contributions to 
bonding interactions in Pt1.97Pr3 (idealized as Pt2Pr3) and Pt4Sn6Pr3. 

Bond type Length  
(Å) 

−ICOHP  
(eV/bond) 

no./cell −ICOHP 
 (eV/cell) 

Contribution  
(%) 

“Pt2Pr3” 
Pt−Pr 2.843−3.795 0.73 264 193.4 85.6 
Pt−Pt 2.973−3.622 0.81 16 12.9 5.7 
Pr−Pr 3.205−3.906 0.11 178 19.7 8.7 

Pt4Sn6Pr3 
Pt−Sn 2.590−2.815 2.28 68 155.1 48.1 
Sn−Pr 3.229−3.623 0.82 104 85.0 26.4 
Pt−Pr 3.380−3.584 0.80 72 57.6 17.9 
Sn−Sn 2.914−3.461 0.42 44 18.4 5.7 
Pr−Pr 4.182−4.615 0.26 24 6.24 1.9 
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Abstract 

 Starting with a 4:6:3 molar ratio of Pt, Sn and R with R = La-Sm, with or without the 

application of a NaCl flux, seven ternary compounds were obtained as single crystals. The 

platinides Pt4Sn6R3, R = La-Nd, crystallize with the Pt4Ge6Pr3 type of structure (oP52, Pnma, a = 

27.6–27.8 Å, b = 4.59–4.64 Å, c = 9.35–9.40 Å). With R = Pr and Nd, Pt4Sn6R3-x ternaries are 

obtained which are considered as high-temperature polymorphs with disorder on Sn and R sites 

and under-occupation at the R sites (x = 0.09 for Pr, and 0.11 for Nd; oP52, Pnma, a = 7.28–7.29 

Å, b = 4.48–4.49 Å, c ≈ 35.1 Å). At this point in the lanthanide series, the composition Pt4Sn6R3-x 

seems to come to an end. With R = Sm Pt7Sn9Sm5 (oS42, Amm2, a = 4.3289(5) Å, b = 28.798(4) 

Å, c = 7.2534(9) Å) is obtained under otherwise the same conditions. It exhibits the rare Zr5Pd9P7 

type of structure, linking polar intermetallics to metal phosphides, in accord with P7Pd9Zr5 = 

Pt7Sn9Sm5. All structures may be described in terms of either negative Pt/Sn networks 

encapsulating positive R atoms, or {PtSnx} clusters (x = 5, 6) sharing vertices and edges with R in 

the second coordination sphere and with considerable heterometallic Pt-R bonding contributions.  
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Introduction 

Cluster complex halides such as {PtPr6}I10 with isolated {PtPr6} clusters or {PtPr3}Br3 

with cluster chains constitute a symbiosis between intermetallic and salt.1 Subsequent elimination 

of the halide ligands, i.e. successive cluster condensation, results in polar intermetallics, e.g. 

Pt3Pr4 with essentially heterometallic bonding features.2 The addition of a reactive metal, e.g. as a 

tin melt, forces competition between the more electropositive metals Pr and Sn for the first 

coordination sphere of the most electron affine metal, Pt. Surprisingly, Sn wins although it has a 

larger electron affinity than Pr.  

There was only one ternary phase known in the system Pt/Sn/Pr, the equiatomic PtSnPr 

with the SiTiNi type of structure, an anti-derivative of cottunite, PbCl2, first reported in 1973.3  

We have recently added Pt4Sn6Pr3 and Pt4Sn6Pr2.91 as well as Pt12Sn25Pr4.2 The first two are 

members of a prolific family of intermetallics, T4E6R3 (T = transition metal; E = p-block main 

group metal or metalloid; R = rare earth metal) with a growing number of structure types, 

sometimes with under-occupation and/or disorder: monoclinic Pt4Ge6Y3 (P21/m)4 and the 

disordered variant Pt4Yb3Si5.7 (P21/m)5 as well as five orthorhombic structures, slightly 

disordered Pt4Ge6Ce3 (Cmcm),6 Pt4Ge6Pr3 (Pnma, R = Pr–Dy),7 Pd4Sn6Ce3 (Pnma, R = La-Pr),8 

Pt4Al6Ce3 (Pnma)9, and Pt4Sn6Pr3-x (Pnma, R = Pr).2 The structures of this family are usually 

described as stacked pentagonal and hexagonal nets of mixed Sn and Pt atoms encapsulating the 

R atoms with high coordination numbers of 14-16. As Pt4Sn6Pr3 and Pt4Sn6Pr2.91 are closely 

related, the aim of this research was to figure out what the substitution of Pr by other lanthanides 

(R = La-Sm) would do to the existence and the crystal chemistry of these ternary intermetallics. 
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Experimental section 

Synthesis. Starting materials were Pt beads (99.9%), La, Ce, Pr, Nd, Sm and Sn pieces (99.9%), 

and NaCl (99.9% purity). NaCl was dried in an oven at 80˚C overnight before placing inside an 

argon filled glovebox. All samples, between 250-500 mg, were weighed and loaded into tantalum 

ampules inside an argon-filled glovebox. Ampules were sealed under argon followed by sealing 

in evacuated silica tubes. Samples were placed in a furnace at 1000˚C for 24 hours followed by 

slow cooling (-20˚C⋅hr–1) to 850˚C or 700°C and annealed for 72 hours. The NaCl flux was 

removed with water after the end of the reaction. 

Pt4Sn6R3 and Pt4Sn6R3-x. Loadings of rare earth metals (R = La-Nd) with Pt and Sn 

pieces in molar ratios of Pt:Sn:R = 4:6:3 were weighed and placed inside tantalum tubes along 

with approximately 250 mg of NaCl. Samples were sealed under the same conditions and placed 

in a tube furnace following the heating profile described above. The somewhat disordered 

Pt4Sn6R3-x modification has been detected in the samples annealed at higher temperatures. No 

disordered variants have been detected in the samples with R = La and Ce. 

Pt7Sn9Sm5. The starting composition for Sm3Pt4Sn6 was weighed and loaded according to 

the above indicated method with NaCl as a flux. The sample was sealed and heated according to 

the same scheme. The resulting product was identified via powder X-ray diffraction to be 

multiphase containing Sm5Pt7Sn9 as the main product with further unknown phases. Small 

crystals of Sm5Pt7Sn9 were selected and characterized by single-crystal X-ray diffraction.  

Structure analysis. Powder and single crystal X-ray diffraction were used to characterize 

products. Samples were crushed in air and a portion ground to a fine powder for phase analysis. 

Powders were sandwiched between greased Mylar sheets housed by an aluminum holder. Data 

was gathered on a STOE STADI P image plate diffractometer (Cu Kα1 radiation, λ = 0.71073 Å; 

Si external standard, a = 5.4308(1) Å) and analyzed using WinXPow software.10 Single crystal 
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X-ray diffraction was performed on a Bruker APEX CCD and Bruker VENTURE diffractometer 

(both Mo-Kα radiation, λ = 0.71073 Å), respectively. The raw frame data were collected using 

the Bruker APEX3 program,11 while the frames were integrated with the Bruker SAINT12 

software package using a narrow-frame algorithm integration of the data and were corrected for 

absorption effects using the multi-scan method (SADABS).13 All positions were refined 

anisotropically. Initial models of the crystal structures were first obtained with the program 

SHELXT-201414 and refined using the program SHELXL-201415 within the APEX3 software 

package. Crystallographic details and refinement parameters for Pt4Sn6R3 and Pt4Sn6R3-x (R = La, 

Ce, Nd) and Sm5Pt7Sn9 are summarized in Table 1; Table 2 contains atomic positions and 

equivalent thermal parameters of Pt4Sn6Nd3, Pt4Sn6Nd2.89 and of Sm5Pt7Sn9. Further data have 

been deposited, see Supplemental Information.  

Results and discussion 

It is surprising that, until recently, the only ternary intermetallic compound known in the 

Pt/Sn/R systems have been the isocompositional PtSnR with R throughout the whole lanthanide 

series including yttrium.3,16-17 The ambient pressure forms of PtSnR with R = Tb-Lu, Y3 

crystallize with the PtHoSn/NiZrAl type, an anti-derivative of Fe2P, or with the SiTiNi type, an 

anti-derivative of cotunnite (PbCl2), R = La-Eu.16,17 In PtSnPr, Pr has twelve nearest neighbors 

from 3.130 to 3.596 Å, as heterometallic {PrPt6Sn6} clusters, and Pt, the most electronegative of 

the three atom types, has four Sn (2.729-2.897 Å) as nearest and six Pr (3.130-3.596 Å) as 

second-nearest neighbors. 

The reaction of binary Pt/Pr alloys, such as Pt2Pr3, with an, obviously reactive, tin flux 

yielded two new ternary intermetallics within the Pt/Sn/Pr system, Pt12Sn25Pr4 and Pt4Sn6Pr3 with 

29.2 and 30.8 mol.% Pt, respectively.2 Subsequent reactions with stoichiometric loadings of 
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Pt4Sn6Pr3 with an unreactive NaCl flux, and without, resulted in two different products. First, 

stoichiometric Pt4Sn6Pr3 crystallizing with the Pt4Ge6Pr3 type of structure,7 secondly, slightly sub-

stoichiometric Pt4Sn6Pr2.91, with a new structure type. Utilizing the same NaCl flux, single 

crystals of Pt4Sn6R3 were grown for R = La, Ce, (Pr) and Nd, all of which adopt the reported 

Pt4Ge6Pr3 type. The new Pt4Sn6R3-x type is obtained with R = Pr (x = 0.09) and Nd (x = 0.11). 

These slightly sub-stoichiometric ternary intermetallics appear to be the high-temperature 

“modifications” of the Pt4Ge6R3 type. All attempts to produce the isocompositional Pt4Sn6Sm3 or 

Pt4Sn6Sm3-x have failed. 
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Table 1. Crystallographic details and refinement parameters for RxPtySnz (R = La, Ce, Nd, Sm). 
Formula Pt4Sn6La3 Pt4Sn6Ce3 Pt4Sn6Nd3 Pt4Sn6Nd2.89 Pt7Sn9Sm5* 

Structure type Pt4Ge6Pr3 Pt4Ge6Pr3 Pt4Ge6Pr3 Pt4Sn6Pr3-x Zr5Pd9P7 

Form. wt., g/mol 1909.23 1912.86 1925.22 1909.35 3185.59 

Space group, Z Pnma (no. 
62), 4 

Pnma (no. 
62), 4 

Pnma (no. 
62), 4 

Pnma (no. 
62), 4 

Amm2 (no. 
38), 2 

a, Å 27.787(5) 27.7018(7) 27.655(3) 7.2821(7) 4.3289(5) 

b, Å 4.6380(9) 4.6149(1) 4.5851(4) 4.4782(5) 28.798(4) 

c, Å 9.399(2) 9.3712(2) 9.342(1) 35.116(3) 7.2534(9) 

V, Å3 1211.3(4) 1198.02(5) 1184.6(2) 1145.2(2) 904.2(2) 
Density (calculated) 
[g/cm3] 10.469 10.605 10.795 11.075 11.700 

µ, mm-1 68.374 69.835 72.247 74.247 81.967 

F (000) 3132 3144 3168 3142 2612 

θ range, ° 1.5 to 35.0 2.0 to 29.1 2.3 to 30.0 2.3 to 27.5 2.8 to 30.0 

Index ranges 
−44 ≤ h ≤ 43 
–7 ≤ k ≤ 7 
−15 ≤ l ≤ 15 

−38 ≤ h ≤ 38 
–6 ≤ k ≤ 6 
−13 ≤ l ≤ 13 

−36 ≤ h ≤ 38 
–4 ≤ k ≤ 6 
−11 ≤ l ≤ 11 

−9 ≤ h ≤ 7 
–5 ≤ k ≤ 5 
−45 ≤ l ≤ 32 

−6 ≤ h ≤ 6 
–40 ≤ k ≤ 35 
−9 ≤ l ≤ 10 

Intensity data 
collected 22068 13338 6625 9282 4663 

No. of independent 
reflections 

2942 [Rint = 
0.0649] 

1956 [Rint = 
0.0714] 

1800 [Rint = 
0.0554] 

1479[Rint = 
0.0964] 

1956 [Rint = 
0.0388] 

Refinement method Full-matrix least-squares on F2 
Data/ Restraints/ 
Parameters 2942/ 0/ 80 1956 / 0 / 80 1800 / 0 / 80 1479 / 0 / 88 1394 / 0 / 68 

Goodness-of-fit (F2) 1.032 1.025 0.95 1.116 1.043 

R1; ωR2 [I0>2σ (I)] 0.0389; 
0.0812 

0.0405; 
0.0984 

0.0442; 
0.1005 

0.0633; 
0.1239 

0.0224; 
0.0438 

R1; ωR2 (all data) 0.0610; 
0.0875 

0.0593; 
0.1057 

0.0838; 
0.1125 

0.0823; 
0.1305 

0.0243; 
0.0441 

Largest diff. peak and 
hole [e⋅Å-3] 

4.312 and –
4.344 

4.377 and –
7.154 

5.434 and –
4.300 

5.799 and –
6.434 

2.197 and –
2.584 

* Flack parameter = 0.036(13) 
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Table 2. Atomic positions and equivalent thermal parameters of Pt4Sn6Nd3, Pt4Sn6Nd2.89 and 
Pt7Sn9Sm5. 

 

Atom Wyckoff 
site 

x y z Ueq SOF 

Pt4Sn6Nd3 
Pt1 4c 0.54411(2) ¼ 0.1301(3) 0.0079(2)  
Pt2 4c 0.44962(3) ¾ 0.3798(3) 0.0095(2)  
Pt3 4c 0.31348(2) ¾ 0.1192(2) 0.0065(2)  
Pt4 4c 0.68647(3) ¼ 0.3687(2) 0.0068(2)  
Sn1 4c 0.49638(5) ¾ 0.1288(4) 0.0079(3)  
Sn2 4c 0.49838(5) ¼ 0.3783(4) 0.0080(3)  
Sn3 4c 0.63755(4) ¼ 0.1247(4) 0.0083(3)  
Sn4 4c 0.28345(5) ¼ 0.2199(2) 0.0071(3)  
Sn5 4c 0.35654(5) ¾ 0.3750(4) 0.0113(3)  
Sn6 4c 0.71658(5) ¾ 0.4692(2) 0.0067(3)  
Nd1 4c 0.40650(4) ¼ 0.1153(3) 0.0105(3)  
Nd2 4c 0.71982(3) ¾ 0.1251(2) 0.0064(2)  
Nd3 4c 0.59387(4) ¾ 0.3641(3) 0.0091(3)  

Pt4Sn6Nd2.89 
Pt1 4c 0.8900(2) ¾ 0.71244(4) 0.0038(3)  
Pt2 4c 0.4310(2) ¼ 0.67025(4) 0.0038(4)  
Pt3 4c 1.1381(2) ¾ 0.58447(4) 0.0040(3)  
Pt4 4c 0.6330(2) ¼ 0.54443(4) 0.0061(4)  
Sn1 4c 0.8081(4) ¼ 0.67456(7) 0.0053(6)   
Sn2 4c 1.0104(4) ¾ 0.78739(7) 0.0038(3)   
Sn3 4c 1.1733(4) ¾ 0.66039(7) 0.0038(3)   
Sn4 4c 0.3498(4) ¼ 0.59573(7) 0.0045(6)   
Sn5 4c 0.5863(4) ¼ 0.46883(7) 0.0051(6)   
Sn6 4c 0.9350(5) ¼ 0.58974(18) 0.0040(3) 0.73(1) 
Sn7 4c 0.9460(15) ¼ 0.5755(5) 0.0040(3) 0.27(1) 
Nd1 4c 0.1744(3) ¼ 0.73370(5) 0.0040(5)  
Nd2 4c 0.6570(3) ¾ 0.61685(6) 0.0092(5)  
Nd3 4c 0.8849(11) ¾ 0.5043(2) 0.0150(14) 0.366(8) 
Nd4 4c 0.8625(7) ¾ 0.52520(13) 0.0150(14) 0.52(1) 

   Pt7Sn9Sm5   	
Pt1 2a 0 ½ 0.3897(2) 0.0048(2) 	
Pt2 4e ½ 0.92479(3) 0.3938(1) 0.0081(2) 	
Pt3 4e ½ 0.64679(3) 0.4415(1) 0.0063(2) 	
Pt4 4d 0 0.79125(3) 0.4858(1) 0.0051(2) 	
Sn1 4e ½ 0.55556(6) 0.5255(2) 0.0049(3) 	
Sn2 2b ½ 0 0.6327(3) 0.0052(4) 	
Sn3 4e ½ 0.83999(6) 0.5624(2) 0.0046(3) 	
Sn4 4d 0 0.70123(6) 0.3701(2) 0.0049(3) 	
Sn5 4d 0 0.86855(6) 0.2296(2) 0.0076(3) 	
Sm1 2a 0 ½ 0.7993(2) 0.0054(3) 	
Sm2 4d 0 0.41027(4) 0.2013(2) 0.0059(2) 	
Sm3 4e ½ 0.72874(4) 0.6957(1) 0.0051(2) 	
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Crystal Structures. Polar intermetallics of the composition Pt4Sn6R3 (1, 23.1 mol-% R) exist 

with R = La─Nd (oP52, Pnma, a = 27.6–27.8 Å, b = 4.59–4.64 Å, c = 9.35–9.40 Å). With R = Pr, 

Nd, a closely related composition exists, Pt4Sn6R3-x, with a crystal structure only recently been 

reported for Pt4Sn6Pr2.91 (2, 22.5 mol-% R, oP52, Pnma, a = 7.28–7.29 Å, b = 4.48–4.49 Å, c ≈ 

35.1 Å). A stoichiometric loading of Pt4Sn6Sm3 together with the same reaction conditions 

resulted in Pt7Sn9Sm5 (3, 23.8 mol-% Sm, oS42, Amm2, a = 4.3289(5) Å, b = 28.798(4) Å, c = 

7.2534(9) Å). The closely related Pt3Sn5Eu2 (20 mol-% Eu) had already been reported with a 

similar unit cell (4, oS40, Cmc21, a = 4.533 Å, b = 26.629 Å, c = 7.318 Å).18 Table S1 contains 

crystallographic details for all structures of compounds just mentioned except for Pt4Sn6Pr3 and 

Pt4Sn6Pr2.91 which have been reported in a preceding article.2 Table S2 gives atomic parameters 

for Pt4Sn6Nd3, Pt4Sn6Nd2.89 and for Pt7Sn9Sm5. Although the full picture of all phases that might 

exist in the ternary systems Pt/Sn/R is certainly not known to date, the close compositions of 1 = 

PtSn1.50R0.75, 2 = PtSn1.50R0.73,  3 = PtSn1.29Sm1.29, and 4 = PtSn1.67Eu0.67 and strong structural 

similarities may make a point for the strong influence of geometric factors in the variation within 

the greater structural family. Although being not directly related, Pt4Sn6Nd3 and Pt7Sn9Sm5 both 

show a direct group-subgroup relationship to Pt3Sn5Eu2 through Pmc21. 

The new ternary intermetallics Pt4Sn6R3 (R = La–Nd, 1) are isostructural with the 

analogous so-called germanides, Pt4Ge6R3, which include R = Pr, Nd, Sm, Gd, Tb, Dy7 while 

Pt4Ge6La3 has never been reported and those with R = Ce6 and Y5 belong to closely related 

derivatives.  
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Figure 1. Projections of the crystal structures of Pt4Sn6R3 (1, R = La-Nd), Pt4Sn6R3-x (2, R = Pr, 
Nd) and Pt7Sn9Sm5 (3) onto equivalent planes. 

 

There are usually alternative ways to describe crystal structures. In the present case, one 

can either start with, first, heteroatomic Pt and Sn clusters encapsulating endohedral R atoms, or 

secondly, with Pt centered Sn clusters which are surrounded, in the second coordination sphere, 

by R atoms. Either way, these building units, {RPtxSny} or {PtSny}Rz (Fig. 1), are connected to 

three-dimensional structures. In the first description, a three-dimensional heteroatomic network of 

atoms with high electronegativities, 2.28 (Pt) and 1.96 (Sn) in the Pauling scale,19 encapsulates 

electropositive lanthanide atoms R (EN = 1.13 for Pr). In the second way of description, the atom 

with the highest electron affinity, EA(Pt) = 205.3 kJ/mol, is surrounded by five or six Sn atoms, 

EA(Sn) = 116 kJ/mol, and additional R atoms at larger distances. Philosophically, we treat the 

structures of these polar ternary intermetallics as either Werner type coordination complexes, 

with the positive central atom (R) surrounded by negative ligands (Pt, Sn), [RPtxSny] or we 

consider them as anti-Werner type cluster complexes20, {PtSny}Rz, with the atom of the highest 

electron affinity, Pt, as the central atom. The latter description paves a way to a better 

understanding of the condensation of clusters from cluster complexes like {PtPr6}I12Pr via binary 

Pt3Pr4 (with {PrPrx} clusters) to ternaries like Pt4Sn6Pr3.  
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Let us start with the perhaps more classical description. The crystal structures of all 

compounds in this article may be described in terms of network structures where the 

electronegative Pt and Sn atoms form tunnels along certain directions including the large R atoms 

which, viewed alone, form straight or zigzag chains (Fig. 1). Thus, the stoichiometric Pt4Sn6R3 

(1) with the Pt4Ge6R3 type of structure exhibits linear one-side branched channels along the b and 

c axes. The structure is then formed of R centered heteroatomic clusters consisting of three 

parallel membered rings 6-4-6−{RPt7Sn9} forming the stem and 5-5-5−{RPt6Sn9} are responsible 

for the branches (Figs. 1a and 2a). On the other hand, these clusters can be represented as 

randomly equatorially capped hexagonal and pentagonal prismatic polyhedra. Each branch 

polyhedron has common pentagonal faces with two stem polyhedra and shares pentagonal faces 

with identical units along the b axis forming a parallel tunnel. 

Although Pt4Sn6R3-x (R = Pr, Nd, 2) have the same space group symmetry, almost 

identical compositions and unit cell volumes, the compounds show distinct differences in atomic 

packing (Fig. 1b) and exhibit disorder of both cationic (R) and anionic (Sn) sites. From the 

cationic point of view the structure contains three building units, 4-7-4−{RPt7Sn8}, 5-7-

5−{RPt7Sn10} and 5-4-5−{RPt6Sn8}. The 4-7-4 units form two-side branched octagonal tunnels 

along the b (Fig. 1b), having large hexagonal faces shared with the 5-7-5 forming the branches. 

Similar tunnels were frequently observed for the A–Au–Tr intermetallics (A = active metal, Tr = 

triel)21,22 including cationic zigzag chains and large positional disorders. A separate set of 

pentagonal tunnels along the b direction is observed in between forming cationic zigzag chains 

along the a axis through bigger shared hexagonal faces (Figs. 1b and 2c, violet). The packing of 

green, yellow and violet polyhedra (Fig. 2c) results in smaller voids in the form of tetrahedral 

stars that are, again, reminiscent of the active metal polar intermetallics, e.g. A0.55Au2Ga2.21 
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Pt7Sn9Sm5 (3) crystallizes with a slightly lower symmetric, well ordered representative of 

the series, though with slightly different atomic ratios, i.e. PtSn1.29Sm0.71 instead of PtSn1.5R0.75. 

The new Pt7Sn9Sm5 belongs to the very rare Zr5Pd9P7 structure type linking polar intermetallics 

to metal phosphides in accord with the formulation P7Pd9Zr5 = Pt7Sn9Sm5.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. R and Pt centered clusters in the crystal structures of Pt4Sn6R3 (1, R = La-Nd), Pt4Sn6R3-

x (2, R = Pr, Nd) and Pt7Sn9Sm5 (3). 
 

Similar to 2, three types of {SmPtxPry} polyhedra of similar architectures (Fig. 1c) build 

the entire structure. They are connected to form pentagonal channels along a with a different 

degree of fusion with the neighboring units. 5-3-5−{SmPt5Sn8} clusters are responsible for the 
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zigzag chains along b sharing larger pentagonal faces with two identical polyhedra (Figs. 1c and 

2e, violet). 

5-4-5−{SmPt6Sn8} (red) together with 5-3-5−{SmPt5Sn8} (green) form fly-shaped 

trimers, separated in the bc plane. Green polyhedra share pentagonal faces with two red ones, 

while the latter have only a small trigonal face in common. The packing results in a limited 

number of small empty trigonal channels along the a axis. It is also worth noting that with the 

next R = Eu,  Pt3Sn5Eu2 exhibits similar cell parameters and zigzag chains of pentagonal 5-4-

5−{EuPt6Sn8} clusters, but they are separated by more regular and well separated 5-8-

5−{EuPt7Sn11} resulting in the compositional change from Pt7Sn9Sm5 to Pt3Sn5Eu2 = 

PtSn1.67Eu0.67. 

In summary, the electropositive rare-earth element atoms R in Pt4Sn6R3 (1, R = La-Nd), 

Pt4Sn6R3-x (2, R = Pr, Nd), Pt7Sn9Sm5 (3) and Pt3Sn5Eu2 (4) have high coordination numbers of 16 

and 15 (1), 15, 17, 14 (2), and 13 (3) as well as 14, 18 (4) with heteroatomic “ligand” spheres of 

Pt and Sn atoms. As the atomic radii of Sn (1.45 Å) and Pt (1.35 Å)23 are very similar, a mixed-

ligand surrounding of the R atoms seems reasonable, which is actually obvious from the adoption 

of the (anti-)types of binary Fe2P and PbCl2, respectively, for the equiatomic PtSnR phases. For 

Pt4Sn6Nd3, for example, with three crystallographically independent Nd positions, the average 

Nd-Pt/Sn distance is 3.538 Å (Table 1), with Nd-Sn distance ranges between 3.216 and 3.781 Å, 

as well as Nd-Pt 3.359 through 3.992 Å. The shortest distances are, therefore, close to the sum of 

the atomic radii of Pr (1.85 Å) and the average of Pt and Sn (1.40 Å), 3.25 Å. With the large 

coordination numbers of R, 16 and 15, respectively, the average distances have to be considerably 

longer. For the {RSn9Ptz} clusters they vary only little with the size of the rare-earth atoms, but 

there is a small lanthanide-contraction effect through the series Pt4Sn6R3 (R = La-Nd), 3.489 (La) 
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to 3.465 Å (Nd). The average Sm-Sn/Pt distance in Pt7Sn9Sm5 is much smaller (3.290 Å) which 

might be attributed to a coordination number of only 13 for all three Sm positions in the structure.  

 

Table 3. Average distances and molar volumes§ for ternary Pt/E/R intermetallics. 

§The molar volume, Vm, is calculated from the cell volume, VE, via: Vm = (VE×NA)/Z; with NA Avogadro’s 
constant and Z the number of formula units in the unit cell.  
*The distances for this compound are curiously similar to that of the Pr analog and needs to be further 
investigated before submission. 

 
In the second, the anti-Werner way to describe the crystal structures of these ternary 

phases, we take the atom with the highest electronegativity, or electron affinity, platinum, as the 

central atom. Then, in all of the structures discussed in this article, Pt is the central atom of a Sn 

polyhedron/cluster, {PtSnx} with x = 5, 6, see Fig. 2. All structures, Pt4Sn6R3 (1, R = La-Nd), 

Pt4Sn6R3-x (2), Pt7Sn9Sm5 (3) and Pt3Sn5Eu2 (4) exhibit {PtSn5} square pyramids, whereas their 

proportion is changing from 100% in 1 to 50% in 2 and 3 and to 33% in 4. 2, 3 and the 4 further 

exhibit polyhedra close to trigonal prisms but show a slope of up to 30° between the horizontal 

faces. Finally, each of the latter contains one {PtSnx}polyhedron atypical for any other structure, 

{PtSn6} octahedra in 2, regular trigonal prisms in 3 and monocapped trigonal prisms in 4. From 

this point of view, it becomes clear that the structure of 2 is at a transition point between those 

with R = La-Nd and R = Sm, Eu, the latter of which have not yet been obtained with Pt4Sn6R3 

 {RSnxPty} {PtSnxRz} Pt/Sn/R Pt/Ge/R  
   R−Sn+Pt Pt−Sn Pt−R Vm Vm 

Pt4Sn6La3 3.487 2.675 3.536 182.4  
Pt4Sn6Ce3 3.474 2.666 3.523 180.4 153.5 
Pt4Sn6Pr3 3.464 2.658 3.512 178.7 152.5 

*Pt4Sn6Nd3 3.463 2.657 3.511 178.3 151.0 
Pt4Sn6Pr2.91 3.381   173.0  
Pt4Sn6Nd2.89 3.373   172.4  
Pt7Sn9Sm5 3.290 2.816 3.122 272.3  
Pt3Sn5Eu2 3.402 2.778 3.485 133.0  
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stoichiometry. All the structures do, however, exhibit identical building principles forming chains 

through the edge and vertex sharing of the common {PtSn5} pyramids and {PtSn6} prisms. 

Average Pt-Sn distances in Pt4Sn6R3 are close to 2.66 Å (Table 1) and reflect somewhat the 

lanthanide contraction which seems surprising. The {PtSn5-6} clusters need to be connected via 

common Sn atoms, in accord with the compositions of 1 = PtSn1.50R0.75, 2 = PtSn1.50R0.73, 3 = 

PtSn1.29Sm1.29, which happens in rather different ways, see Fig. 3. All of them form chains 

through edge and vertex sharing of {PtSn5} pyramids and {PtSn6} prisms. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 The packing/connection of {PtSnx} polyhedra in the crystal structures of Pt4Sn6R3 (1, R = 
La-Nd), Pt4Sn6R3-x (2, R = Pr, Nd) and Pt7Sn9Sm5 (3). 
 

In the second coordination sphere, Pt is surrounded by R atoms with average distances 

around 3.5 Å (Table 1) with a stronger reflection of the lanthanide contraction. This is only 

surprising when one considers whether there is Pt-R bonding. The sum of the atomic radii of Pt 

(1.35 Å) and Pr (1.85 Å), i.e. 3.20 Å, suggests that there are no significant bonding interactions. 
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Then, the obvious influence of the lanthanide contraction on the Pt-R distances would simply be a 

packing effect. However, integrated crystal orbital Hamilton populations show a value of -0.80 

eV/bond for Pt-Pr bonding, much less than the 2.28 eV/bond for Pt-Sn bonding, but it adds up to 

18% of the overall bonding for Pt4Sn6Pr3.2  

Nevertheless, as Pt has a higher electronegativity/electron affinity than Sn, we are, strictly 

speaking, dealing with platinides, not stannides, and thus, may finally remove the question mark 

from the title! 

Conclusions 

The series Pt4Sn6R3 has been observed for the light rare earth elements, R =  La–Nd; they 

are isostructural and crystallize with the Pt4Ge6R3 type of structure (R = Pr–Dy), so-called 

germanides. These are in fact platinides like the corresponding “stannides”, subject to the higher 

electronegativity/electron affinity of Pt than Sn. The respective Pr and Nd compounds could be 

thought dimorphic with Pt4Sn6R3-x as the high temperature modification with a slightly reduced R 

content, x = 0.09 (Pr) and x = 0.11 (Nd); they crystallize in the same space group (Pnma) and 

with nearly identical unit cell volumes.  However, the crystal structures of Pt4Sn6R3 and Pt4Sn6R3-

x are distinctly different and show, besides under-occupation of Pr sites, disorder of both Sn and 

Pr sites. All attempts to synthesize Pt4Sn6Sm3 and Pt4Sn6Sm3-x have failed. Instead, Pt7Sn9Sm5 

was obtained, a new example for the rare Zr5Pd9P7 type of structure linking polar intermetallics to 

metal phosphides in accord with the formulation P7Pd9Zr5 = Pt7Sn9Sm5. Bonding in all these 

compounds is predominantly heterometallic, Pt-Sn, Sn-R, and Pt-R bonding contributions 

decrease in this sequence.  
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Abstract  

Four compounds are reported in this study: Co7Pr17 (10, cP96, P213, a = 13.4147(8) Å, Z 

= 4), either non-existent or obscured in the phase diagram has been obtained from a PrBr3 flux. 

With 29.2 mol% Co, it is close to Co2Pr5 (28.6 mol% Co, 2, C2Mn5 type of structure, mC28, 

C2/c, a = 16.5471(7) Å, b = 6.5107(3) Å, c = 7.1067(3) Å, β = 96.230(3)˚, Z = 4), existent in the 

Co/Pr phase diagram, produced by arc-melting of a stoichiometric mixture of the metals. The 

addition of the reactive tin to Co/Pr mixtures yielded two new ternary polar intermetallics, 

CoSn3Pr1-x (x = 0.04, 11, RuSn3La type, cP40, Pm-3n, a = 9.587(3) Å, Z = 8) and Co2–xSn7Pr3 (x 

= 0.78, 12, Ni2–xSn7–yCe3 tape, oC24, Cmmm, a = 4.5043(4) Å, b = 27.227(2) Å, c = 4.5444(3) Å, 

Z = 2). Electronic structure calculations exhibit extensive heteroatomic Co-Pr interactions in the 

binaries with little homoatomic contributions. With tin as the third component in the ternaries, 

heteroatomic Co–Sn and Sn–Pr bonding interactions are dominant in CoSn3Pr, following the 

succession of coordination spheres around Co.  

 



www.manaraa.com

64 
 

 

Introduction 

With roughly 70 elements of the periodic table having metallic properties under ambient 

conditions, there are n!/(n-k)!k! = 70!/68!2! = (70x69)/2 = 2415  binary systems possible, and with 

each system containing statistically certainly more than one compound, and more modifications 

at higher temperatures and/or pressures, the number of possible compounds is virtually infinite, 

already under thermodynamic equilibrium. Off equilibrium, there are an unforeseeable number of 

further compounds. Moving to ternary or even higher systems, the number of possible 

compounds is endless, with for example, 54740 ternary systems for 70 metals.  

 
Figure 1. The Co/Sn/Pr compositional triangle.  

The most recent compilation of the Co/Pr system exhibits nine intermetallic compounds, 

CoPr3 (1, 25 mol% Co), Co2Pr5 (2, 28.6), Co1.7Pr2 (3, 45.9), Co2Pr (4, 66.7), Co3Pr (5, 75), 

Co7Pr2 (6, 77.8), Co19Pr5 (7, 79.2), Co5Pr (8, 83.3), and Co17Pr2 (9, 89.5), some of which have 

low- and high-temperature modifications (2, 6, 9), one exists only at high temperatures (8, 854-

1232°C).1 We hereby add a new binary compound, either nonexistent in thermodynamic 

equilibrium,2,3 or obscured in the phase diagram, Co7Pr17 (10, 29.2 mol% Co) very close in 

composition to 2 (28.6 mol% Co). This new intermetallic was obtained in the pursuit of cluster 
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complex halides such as {CoPr3}Br3 in minor yields from a PrBr3:Pr:Co = 1:2:1 molar mixture. 

Attempts to reproduce 10 in a classic arc-melting procedure yielded 2. As the interpretation of 

these results was that 10 had been produced essentially from a PrBr3 melt, other fluxes such as 

NaCl and metallic Sn were used. As a NaCl melt was un-reactive, providing a temperature above 

800°C and some chance for the precipitation of an intermetallic from an over-saturated solution, 

the Sn melt is reactive and provided two new ternary Co/Sn/Pr intermetallics, CoSn3Pr1–x (x = 

0.044, 11), Co2–xSn7Pr3 (x = 0.782, 12). Ternary Co/Pr/Sn intermetallics have been largely 

underexplored since the last published ternary, Co57Pr117Sn112, in 2010. Currently, six compounds 

are reported in this system: Co8Sn4Pr3 = CoSn0.5Pr0.375 (13),4 Co57Sn112Pr117 = CoSn1.96Pr2.05 

(14),5,6 Co4Sn13Pr3 = CoSn3.25Pr0.75 (15),7 CoSn4Pr2 (16),8 Co3Sn14Pr3 = CoSn4.67Pr (17),9 and 

Co0.33Sn2Pr = CoSn6Pr3 (18),10 see Figure 1. 

Experimental section 

Synthesis. Starting materials were Co beads (99.9%), Pr and Sn pieces (99.9%), and NaCl 

(99.9% purity). NaCl was dried in an oven at 80˚C overnight before placing inside an argon filled 

glovebox. PrBr3 was prepared from the oxide following the ammonium bromide route.11 All 

samples, between 250-500 mg, were weighed and loaded into tantalum ampules inside an argon-

filled glovebox. Co/Pr binary samples were arc melted or loaded with either NaCl or Sn (approx. 

250 mg) as a flux. The NaCl excess could be removed with water. Ampules were sealed under 

argon with an He arc, followed by sealing in evacuated silica tubes with the aid of an H2/O2 torch. 

Samples with NaCl as a flux were placed in a furnace at 1000˚C for 24 hours followed by slow 

cooling (-10˚C⋅hr–1) to 850˚C and annealed for 3 days. Samples with Sn as a flux were placed in a 

furnace at 500˚C for 48 hours, then quenched. 
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Co7Pr17 (10). The starting composition for {CoPr3}Br3, PrBr3 + 2Pr + Co, was weighed 

and loaded according to the above indicated method. The mixture was pre-reacted at 800 ˚C for 7 

days, cooled at 1 ˚C⋅hr–1 to 400 ˚C and finally cooled to room temperature at 10 ˚C⋅hr–1. The 

resulting product was multiphase containing a new intermetallic compound in minor quantities. 

Small crystals of Co7Pr17 were selected and characterized from that sample. Attempts to prepare 

Co7Pr17 from a stoichiometric mixture of the metals resulted in the formation of Co2Pr5. 

Co2Pr5 (2). The starting composition of Co2Pr5 was weighed, pressed into a pellet and arc 

melted. The resulting button was annealed at 500 ˚C for a week. According to powder X-ray 

diffraction the sample was found to be phase pure. Small crystals of Co2Pr5 of good quality could 

be selected and tested from the same sample; however, the crystals for structural investigation 

were selected from additional nonstoichiometric samples obtained in Ta ampule with NaCl flux 

using slow cooling according to the above described scheme. 

CoSn3Pr1–x (x = 0.044, 11), Co2–xSn7Pr3 (x = 0.782, 12). Starting compositions of 

Co7Pr17 and Co2Pr5 with excess Sn as a flux were weighed and placed inside tantalum tubes. 

Samples were sealed under the same conditions and placed in a tube furnace following the 

heating profile described above. Single crystals of (11) were obtained as minor phase (12) was 

obtained from an initial attempt to reproduce the reported CoSn4Pr2 from the stoichiometric 

loading with a NaCl flux. 

Structure analysis. Single crystal and powder X-ray diffraction were used to characterize 

products. Samples were crushed in air due to low sensitivity to oxidation and hydrolysis for 

extended periods. A portion of the respective sample was ground to a fine powder for purity 

check and phase analysis. Powders were sandwiched between greased Mylar sheets housed by an 

aluminum holder. Data was gathered on a STOE STADI P image plate diffractometer (Cu-Kα1 

radiation, λ = 1.54178 Å; Si external standard, a = 5.4308(1) Å) and analyzed using WinXPow 
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software.12 Single crystal X-ray diffraction was performed on a Bruker APEX CCD and Bruker 

VENTURE diffractometer (both Mo-Kα radiation, λ = 0.71073 Å). The raw frame data were 

collected using the Bruker APEX2/APEX3 programs,13 while the frames were integrated with the 

Bruker SAINT13 software package using a narrow-frame algorithm integration of the data and 

were corrected for absorption effects using the multi-scan method (SADABS).14 All positions 

were refined anisotropically. Initial models of the crystal structures were first obtained with the 

program SHELXT-201415 and refined using the program SHELXL-201416 within the APEX3 

software package. Refinement details and structural parameters can be found in Tables 1–3. 

Differential thermal analysis has been performed on ~0.1g sample cut from the as cast 

button. It was sealed in a Mo crucible (outgassed under a vacuum by induction heating) by arc 

welding and subjected to heating (20 °C/min) and cooling (5−10 °C/min) runs (accuracy of ± 5 

°C) in a Netzsch 404 thermoanalyzer. 

Electronic structure calculations. DFT-based electronic structure calculations for Pr17Co7 and 

slightly idealized PrCoSn3 (with the fully occupied Pr sites) were performed according to the 

linear muffin–tin–orbital (LMTO) method in the atomic sphere approximation (ASA).17,18 The 

Wigner–Seitz radii were automatically generated and empty spheres were included for better 

approximation of full potentials. They were determined to be 1.87, 1.81, 1.77, 1.76, 1.74, 1.79 

and 1.81 Å for Pr1–Pr7; 1.53, 1.51 and 1.50 Å for Co1–Co3 in (1); 2.26, 2.20, 1.43 and 1.59 for 

Pr1, Pr2, Co and Sn, respectively, in (3). Basis sets of Pr 6s,(6p),5d and Co 4s,4p,3d and Sn 

5s,5p,(5d),(4f) were employed. 6p orbitals of Pr were downfolded as well as 5d and 4f orbitals of 

Sn.19 Chemical bonding analysis was performed based on the crystal orbital Hamilton 

populations (COHP).20 
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Results and discussion 

The cobalt atom with its nine valence electrons appears to be perfect as an endohedral 

atom T in cluster complex halides, X = Cl, Br, I, in both octahedral or trigonal-prismatic rare-

earth metal (R) clusters: [{CoPr6}I12]Pr with isolated octahedra and {Co2Pr2}I with condensed 

trigonal prisms may serve as only two examples,21 of which more than 30 have been synthesized 

and characterized over the years.22 Another compound, {CoPr3}Br3,23 subject to powder X-ray 

diffraction studies crystallizing with a defect NaCl-type of structure, also known from Gd3CCl3 

(cubic, Ca3PI3 type),24 was the target within the pursuit of getting deeper knowledge of the 

{TR3}X3 family which comes about in 6 structural varieties.22 Single crystals of the intermetallic 

Co7Pr17 were obtained instead. Apparently, PrBr3 served as a flux for the crystallization of this 

hitherto nonexistent intermetallic.  

In the praseodymium rich part of the Co/Pr phase diagram, there are three compounds, 

CoPr3, “Co1.7Pr2”, and Co2Pr5 (28.6 mol-% Co) which melts incongruently at 544°C.1 It is very 

close in composition to Co7Pr17 (29.2 mol-% Co) which has now been obtained through 

annealing of a PrBr3/2Pr/Co synthesis at 400°C, originally heated up to 800°C. Attempts to 

reproduce Co7Pr17 via the conventional arc-melting procedure all failed and produced Co2Pr5 as 

single crystals. With the heavier rare-earth metals, phases of the composition T3R7 (30 mol-% T) 

are also frequently seen.  

The application of the non-reactive NaCl flux to the binary Co/Pr compositions did not 

yield any new results other than Co2Pr5. The reactive tin flux led into an already existing gold 

mine with the addition of three new Co/Sn/Pr ternaries to the already reported six. As tin was 

used in excess, these three compounds, CoSn3Pr1–x (x = 0.044, 11), Co2–xSn7Pr3 (x = 0.782, 12), 

exist in the tin-rich part of the ternary system where all the others except Co8Sn4Pr3 were found.  
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Crystal structures. It is amazing that two compounds that are very close in composition, 

CoPr2.43 (Co7Pr17, 10, cP96, P213, a = 13.4147(8) Å, Z = 4) and CoPr2.5 (Co2Pr5, 2, mC28, C2/c, a 

= 16.5471(7) Å, b = 6.5107(3) Å, c = 7.1067(3) Å, β = 96.230(3)˚, Z = 4) crystallize with 

extremely different structures. In the first, there are three crystallographically independent Co 

positions surrounded by 8, 9, and 9 Pr atoms, respectively, with overall averaged Co-Pr distances 

of 2.973 Å, see Figure 2. In the second, there are exclusively trigonal-prismatic {CoPrx} clusters 

present with d(Co-Pr) = 3.008 Å. The (calculated) density of Co7Pr17 is considerably higher than 

that of Co2Pr5, 7.726 vs. 7.149 g/cm3. 

 

 
Figure 2. The three crystallographically independent {CoPrx} clusters (with x = 8, 9, 9) in 
Co7Pr17 and the connection of three light blue {Co1Pr8} clusters with three red {Co2Pr9} and one 
green {Co3Pr9} cluster to a {Co7Pr35} supercluster. 

Co7Pr17 crystallizes cubic in the non-centrosymmetric space group P213. All positions are 

fully occupied and there no elemental disorder on any site. Phases of similar to equal 

compositions have been reported with T = Pd more than four decades ago and either addressed as 

Pd28R64 or so called Pd2R5−x (x = 0.14) with R = Tb, Dy, Ho, Er, Tm, Lu, Y.25 The structure was 

determined for Pd28Dy64 = Pd7Dy17 in space group Fd m and is related to the structure of 
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perfectly ordered NiTi2.26 There are two out of three Dy sites as well as the only Pd site under-

occupied. As we have recently obtained Pd7Er17 which turns out to be isotypic with Co7Pr17 with 

a = 13.365(2) Å, which is almost identical with Fornasini’s a = 13.368 Å for “Pd2Er5”,25 we have 

reason to believe that this is the ordered low temperature modification of the reported phase.27  

The structure of Co7Pr17 may be described in different ways. One is to connect the 

{CoPrx} clusters of Figure 2 to a supercluster {Co7Pr35}, Figure 2 (left), which are further 

connected to a three-dimensional structure, in accord with space group symmetry. Another way is 

to edge-share tetramers of centered trigonal prisms {CoPr6} around empty {Pr4} tetrahedra, 

{Co4Pr16} (green) and trimers of interpenetrating {CoCo2Pr10} icosahedra, {Co3Pr20} (blue), 

Figure 3. All faces of the former are capped by additional Pr atoms forming a distorted Pr6 

octahedron around the central {Co4Pr4} tetrahedral star. The sequence A4B4A6 is a well-known 

structure of the clusters in gamma brasses.28 {TR6} trigonal prisms and their clusters are 

frequently observed in other binaries. The most prominent examples include face-sharing dimers 

as single building units in Pt3Pr4 or Pt2Pr3,29,30 edge- and vertex sharing trimers and polymers in 

two compositionally related Pd3R7,31,32 Pd2R5
33,34 and Co2R5.35  

The second group of polyhedra (Figure 3, left, blue) belongs to the anti-Mackay type of 

clusters.36 Anti-Mackay clusters are polytetrahedral formations; the most stable consist strictly of 

interpenetrating icosahedra and those observed in (10) satisfy this condition. The Pd1−xR2 phases 

contain similar units built around the T4 tetrahedron, thereby containing four interpenetrating 

icosahedra in contrast to the three as observed in Co7Pr17. Among the most stable anti-Mackay 

type oligomers, tetramers are the most popular due to the wide spread of the gamma brasses.37 

Homoatomic dimers and tetramers have been observed in Li intermetallics,38-41 while hetero-

diatomic dimers, tetramers, pentamers and tridecamers have been detected in e.g. Mn3Al10,42 in 
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the La–Ni–Mg system,43 and the Bergman type quasicrystal approximants.44 Co7Pr17 is the first 

representative of a structure with anti-Mackay type trimers. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Left: Edge-shared tetramers of centered trigonal prisms {CoPr6} around empty {Pr4} 
tetrahedra, {Co4Pr16} (green) and trimers of interpenetrating {CoCo2Pr10} icosahedra, {Co3Pr20} 
(blue) in the crystal structure of Pr17Co7. Right: {Pr6} octahedra (green), {Co4Pr4} tetrahedral 
stars (red) and {Co3Pr2} trigonal bipyramids (violet) in a Heusler type arrangement. 

An alternative elegant description of the structure of Co7Pr17 is based on a Heusler type 

packing (Figure 3, right). The centers of {Pr6} octahedra, { Co3Pr2} trigonal bipyramids and 

{Co4Pr4} tetrahedral stars are identical with the atoms of the Hg2CuTi type,45 the F-43m variant 

of the most common Cu2AlMn-Fm3m arrangement.46 Thus, {Pr6} octahedra are located as the 

atoms of a cubic densest packing of spheres (4a; 0,0,0 in F-43m) and fill one half of the 

tetrahedral holes (4c, ¼¼¼) with { Co4Pr4} tetrahedral stars occupying the other half of the 

tetrahedral holes (4d, ¼¾¾) and the {Co3Pr2} trigonal bipyramids are in 4b, ½½½.  

A phase labelled Co3Pr7 was discovered in an early phase diagram determination (1974) 

and found to be Co2Pr5 (2) by powder X-ray diffraction in analogy with Co2Sm5 whose structure 

was determined by single crystal X-ray diffraction.35 These crystallize with the C2Mn5 type of 
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structure where, so far, Co2R5 with R = Pr, Nd, Sm are the only representatives with a 3d-T metal; 

other T2R5 phases with R = Eu, Dy, Er, Yb, Lu are known with 4d- and 5-d noble metals centering 

the {R6} trigonal prisms. The crystal structure of Co2Pr5 (2) was refined from single-crystal X-

ray data. {CoPr6} trigonal prisms share edges and vertices forming formally separated layers 

parallel to the bc plane (Figure 4). The prisms form two phase-shifted sinusoidal chains through 

edge-sharing along the c direction forming a checkered pattern being a one-dimensional analogy 

of the HfCuSi2 type.47 These connect to identical units along the b direction through vertex-

sharing. In spite of the low symmetry the space in between the layers is filled by pretty regular 

empty {Pr4} tetrahedra and {Pr5} square pyramids, though there are no larger polytetrahedral 

motifs as observed in Co7Pr17.  

 

 

 

 

 

 

 

 

 

Figure 4. Packing motifs based on edge- and vertex-sharing {CoPr6} trigonal prisms in the 
crystal structure of Co2Pr5. 

The crystal structure of CoSn3Pr1–x (x = 0.044, 11, cP40, Pm n, a = 9.587(3) Å, Z = 8, 

RuSn3La48 type) consists of a vertex-sharing network of trigonal-prismatic {CoSn6} clusters, 

d(Co-Sn) = 2.608 Å, CoSn6/2 = CoSn3 that incorporates the Pr atoms (Figure 5, left). These 

occupy two crystallographically independent sites, (Pr1, 2a; Pr2, 6c) corresponding to 

{Pr1Sn12}(Co4) icosahedra, d(Pr1-Sn) = 3.274(1) Å, with 4 Co atoms at a distance of 3.390(1) Å 
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and {Pr2Sn12}Co4 tetracapped cuboctahedra with the Co atoms in the same coordination sphere 

as Sn, with distances of 3.329(1) (Pr2-Sn), 3.390(1) (Pr2-Co), and 3.401(1) Å (Pr2-Sn). The 

{Pr1Sn12} icosahedra, form a body-centered arrangement and share smaller trigonal faces 

resulting in a relatively dense packing with only small tetrahedral voids (Figure 5, right).  

The peculiar problem of this, and a number of related, structures is the under-occupation 

of one Pr site, Pr1, 85.2%. With this, the thermal displacement factor has a reasonable value (U11 

= U22 = U33 = 0.0147), close to that for site 6c (Pr2, U11 = 0.0124(3), U22 = U33 = 0.0088(2)). 

For RuSn3Eu, with the same structure, full occupation of both Eu sites is assumed 

although Ueq’s are then 0.0243(4) and 0.0060(2), respectively.49 However, there are a number of 

interpretations in the literature for T/E/R ternary intermetallics claiming full or partial occupation 

of a position by E or R, or mixed occupation by E/R or T/E. In the Co/Sn/Pr system, Co4Sn13Pr3 = 

CoSn3.25Pr0.75 (15) has been reported,7 with estimations on the basis of isostructural behavior with 

no refinement or analysis. In Pt12Sn24Pr4.84
29 as well as in the isostructural Ni12Sn24La4.87

50 one R 

site is under-occupied; they both belong to the Gd3Ni8Sn16 (= Ni12Sn24Gd4.5) structure family.51 

Another work suggested mixed R/Sn occupation for Pt12Sn24+xR5–x, assuming full occupation of 

the 2a site.52 Mixed Ca/Sn and Sn/Co occupations have been proposed for Co8Sn25Ca7
53 and 

Co4.3Sn12.7Yb3.54 

Co2–xSn7Pr3 (x = 0.782, 12, oC24, Cmmm, a = 4.5043(4) Å, b = 27.227(2) Å, c = 

4.5444(3) Å, Z = 2) belongs to a not so popular family, the Ni2–xSn7–yCe3 type of structure, 

although with unique features. It remains unclear why the Sn content in the prototype is given as 

7−y as all the other compounds exhibit fully occupied Sn positions. 
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Figure 5. {PrSn12} (blue), {PrSn12}Co4 (reddish) and {CoSn6} polyhedra in the crystal structure 
of CoSn3Pr1–x (x = 0.044) = Co4Sn12Pr3.82. 

(12) follows the general behavior although the strong deficiency of the Co position leads 

to a small positional disorder of a neighboring Sn site. This disorder does not affect the 

occupation but leads to the optimization of the interatomic contacts in the area (Fig. 6, dashed 

lines). On first sight, the atomic arrangement has a lot in common with binary Sn2Pr,55 including 

symmetry and unit cell proportions. 

The crystal structure of (12) appears as a layered structure, while the layers can hardly be 

considered as separated. The anionic (Co/Sn) substructure is built of empty {Sn5} and {CoSn5} 

tetragonal pyramids forming an up and down checkered pattern. Two such slabs are mirrored 

through the common vertices of the empty pyramids and can be considered as a pseudo-two-

dimensional motif in the ac plane. The slabs are connected through rather weak Sn−Sn 

interactions of 3.053 Å which are pretty short taking the situation in CoSn3Pr1-x into account. In 

contrast, the checkered pattern in the related Sn2Pr (=Sn6Pr3) is formed of overlapping up and 

down pyramids (resulting in empty octahedra), empty slots between them, and consequently 

vertex-sharing as the layer forming tool. Both structures contain zigzag chains along the a 

direction, while (12) contains additional planes of Pr rectangles. Nevertheless, in all cases Pr−Pr 

distances exceed 4 Å and can hardly be considered important in bonding schemes. Two different 
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Pr polyhedra are observed in the structure, within and between the slabs. The former are 

cuboctahedra filling the space between empty {Sn5} pyramids, while the latter are slightly 

irregular {Sn8} square prisms capped by two extra Sn and two Pr atoms over the larger square 

faces. These polyhedra together with the centered {CoSn5} pyramids form the connecting slabs. 

 

 
Figure 5. {CoSn5} square pyramidal network and {PrSn12} cuboctahedra in the crystal structure 
of Co2–xSn7Pr3. 

Electronic structure calculations have been performed for Co7Pr17 (10), Co2Pr5 (2) and 

CoSn3Pr (11). For CoSn3Pr fully occupied Pr positions were assumed. The electronic densities of 

states (DOS) curves for Co7Pr17 (10) and CoSn3Pr (11) (Figure 6) differ due to the presence of the 

p component (Sn) in the ternary compound and, accordingly, more extended bands until −11 eV. 

However, they are qualitatively similar down to -5 eV from EF where Pr 5d and Co 3d 

contributions are dominant. Figure 7 shows the site projected DOS curves for both compounds. 

The DOS curve for CoSn3Pr exhibits a maximum in the range of −0.5 to −2.5 eV which is 
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significantly closer to the Fermi level than in corresponding palladides, platinides or 

aurides.27,29,56,38 The close vicinity of the Co 3d orbitals to the Fermi level suggests that their role 

must be more important in valence electron count while the transition metals are usually assumed 

to not provide valence electrons. Such a narrow distribution of the d orbitals is typical for some 

ionic platinides where relativistic effects play a crucial role,57,58 while the p-element containing 

compounds usually show considerably higher dispersion.59-61 Pr 6s and Co 4s orbitals in (10) are 

located between -2 and -4 eV from EF, whereas the presence of Sn in (11) shifts them into the 

area below –4 eV with second maxima around –8 eV. Sn 5s contributions are dominant in the 

range between –6 and –11 eV, while Sn 5p are significant down to –5 eV. Being less visible, both 

Pr 6s and 6p orbitals provide quite decent contributions particularly at the Fermi level.42 

 

 
Figure 6. Total and element projected DOS curves for Co7Pr17 (left) and CoSn3Pr (right). 

Co7Pr17 demonstrates significant DOS values at the Fermi level with the latter being 

located in a small local minimum. Due to structural complexity and the large unit cell it is hard to 

observe any clear pseudogap. However, the Pr and Co curves cross around that point with the 

former starting to increase and the latter continuing to drop. A significantly different picture is 
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observed for CoSn3Pr where EF falls into a narrow but very deep pseudogap indicating the 

importance of a certain valence electron count for the structural stability. 

 
Figure 7. Site projected DOS curves (PDOS) for Co7Pr17 (left) and CoSn3Pr (right). 

This situation has been observed in a number of Ga rich polar intermetallics with active 

metals.62,63 Na17Au5.87Ga46.63 for example contains an extended network of separate or fused 

empty icosahedra almost opening a gap at the Fermi level. In that case Au is acting as the doping 

atom for the vec (valence electron concentration) adjustment, while Na is a nearly a pure electron 

donor. It has already been shown on the example of RuSn3Eu that the vec is not the least 

important factor for the stability of the Rh4Sn13Pr3 structure type so it may even be responsible 

for the oxidation state of Eu in the mixed-valent systems.49 
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The same conclusion may be derived from the DOS curves of (11) with the potential 

replacement of two Pr for Sn leading to significantly higher values at the Fermi level as well as 

moving some interatomic interactions into the strongly antibonding regions (Figure 8). On the 

other hand, this concept supports the possibility of the second tin position with divalent metals 

e.g. Ca or Sr. 

From a structural point of view Co2Pr5 contains Co-centered trigonal prisms of Pr, 

{CoPr6}, exclusively, while in Co7Pr17 higher coordinated Co atoms are evident, although the 

{CoPr6}, prisms are still basic, all with varying connection principles. The analysis of the bonding 

aspects may shed more light on composition/bonding interplay as a main factor leading to two 

phases with such a close composition and, in the end, rather different structures. Co−Pr distances 

in both compounds are in the ranges 2.81−3.68 Å and 2.72−3.59 Å, respectively, showing an 

insignificant shortage in the latter case that is compensated through Pr−Pr separations, 3.35−3.77 

Å and 3.55−3.94 Å, showing an identical degree of dispersion. This distribution is also 

quantitatively expressed in the contribution to the total bonding in both compounds (Table 4). 

Heteroatomic Co−Pr contributions, dominating in both structures, increase significantly from 

72.4 (Co7Pr17) to 87.9% (Co2Pr5) while Pr−Pr contributions are reduced by ~50% from 25.7 to 

12.1%.  

The situation within the Co-Sn clusters in both Co7Pr17 (11) and Co2Pr5 (2) is almost 

identical with 1.12−0.92 and 1.12−0.86 eV/bond, respectively. Pr−Pr contributions are 

unsurprisingly less populated, they provide up to 0.35 eV/bond, though the average contribution 

is much lower, especially in (2), see Table 4. Co−Co populations are also not negligible in 

Co7Pr17 (11), not at least due to d orbital contributions at lower energies and are, on the average, 

equal to those of Pr−Pr. In Co2Pr5 (2), Co−Co interactions are located beyond any reasonable 

limits and do not participate in bonding schemes. Co−Pr and Pr−Pr −COHP curves show bonding 
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interactions at all energies; those of (2) exhibit a strong maximum of bonding interactions at the 

Fermi level, which is assumed to be an important hint at the higher thermodynamic stability of 

Co2Pr5 compared with Co7Pr17. 

 
Figure 8. Average –COHP curves for interatomic interactions in the crystal structures of Co7Pr17 
(left) and Co2Pr5 (right). 

 

Bonding analysis for the ternaries is based on CoSn3Pr (11) alone subject to heavy 

disorder in (12) that does not allow a precise examination of its electronic structure. Heteroatomic 

bonding dominates quantitatively also in CoSn3Pr, though the main contributors are slightly 

redistributed. Co−Sn  and Sn−Pr interactions provide 82.4% in the total bonding with very similar  

fractions, with little contribution from Co-Pr interactions (5.6%), although the individual –

ICOHP is still 0.49 eV/bond, larger than for homoatomic Sn-Sn interactions (0.30 eV/bond). As 

their number per unit cell is much larger, the overall contribution of Sn-Sn bonding is 12.0 %. 

Co−Sn only interactions in the structure of CoSn3Pr (11) are limited to {CoSn6} trigonal prisms 

alone (as in Co2Pr5) and are represented by one bond length of 2.608 Å. This picture is a specific 

anti-type analogy to the Au-rich rare earth stannides Au7Sn3R3,64,65 where all T−Sn contacts are 

restricted to {SnT6} trigonal antiprisms. The corresponding −COHP plot shows that these 

interactions are significantly populated at lower energies but are rather nonbonding at the EF, 
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while the addition of more electrons shifts them into strongly antibonding regions. Pr−Sn bonds 

in the structure of CoSn3Pr are present in two polyhedra, {PrSn12} icosahedra and the larger 

{PrSn12}Co4 units in a pretty narrow range from 3.27 to 3.40 Å. All these interactions are highly 

populated and strongly bonding at the Fermi level. Although the Co atoms in {PrSn12}Co4 may 

be considered as in the first coordination sphere of Pr (3.390 Å) but their smaller atomic size 

indicates weaker bonding. Co−Pr interactions are optimized well below the Fermi level and 

remain nonbonding uo to the Fermi level. Sn−Sn interatomic contacts are widely spread between 

3.00 and 3.77 Å. Their interaction can be characterized as antibonding; however, strong maxima 

(antibonding minima) at EF point to some electronic stabilization. Adding more electrons, e.g. 

replacing Pr in the 2a position with Sn, again pushes the interaction to a strongly antibonding 

regime. This is in line with the DOS curves and the conclusions from the RuSn3Eu work about 

strict vec requirements for the structure type. Na−Au−E (E = Ga, Ge, Sn) Bergman type 

approximants may serve as an additional example for the occupation of icosahedral centers based 

on the total vec. Strictly, within one Na−Au−Ga system, icosahedra in the Ga rich phases are 

always empty, while those in the Au rich part are occupied by extra Ga to compensate valence 

electron loss.66,67 

The bonding picture in Co2–xSn7Pr3 (12) is qualitatively similar in many aspects:  Co−Co 

and Pr−Pr interactions are practically absent and do not play any visible role in the bonding, Pr 

and Co are separated from each other as much as possible, Co is surrounded strictly by Sn atoms, 

although in the form of square pyramids. Thus, heteroatomic Co-Sn, Sn-Pr and Co−Pr with some 

contribution from homoatomic Sn−Sn bonding provide to total bonding. Due to significant 

positional disorder, an exact analysis of the interatomic contacts cannot be drawn. 
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Figure 9. Average –COHP curves for interatomic interactions in the crystal structure of CoSn3Pr. 

Conclusions 

With this study, we have added a new binary polar intermetallic, Co7Pr17, and two 

ternaries, CoSn3Pr1-x (x = 0.04) and Co2–xSn7Pr3 (x = 0.78), to the Co-Sn-Pr system. Co7Pr17 

(CoPr2.43) is either nonexistent in the sense that is thermodynamically unstable or it is obscured in 

the equilibrium phase diagram subject to its close neighbor, Co2Pr5 (CoPr2.5). The structures of 

the four compounds were determined by single-crystal X-ray diffraction. {CoPr6} trigonal-

prismatic clusters are an important structural unit in the binaries, exclusively in Co2Pr5, 

complemented by additional Pr atoms to enhanced coordination numbers of 8 and 9, respectively. 

In the ternaries, Sn takes over the first coordination sphere of Co atoms; trigonal-prismatic 

{CoSn6} clusters and {Pr1Sn12} icosahedra, partially complemented by Co “ligands” are 

important structural features in CoSn3Pr1-x (x = 0.04, RuSn3La type) as well as square pyramidal 

{CoSn5} clusters and {PrSn12} cuboctahedra are highlighting the crystal structure of Co2–xSn7Pr3 

(Ni2–xSn7–yCe3 type). The electronic structures are dominated by extensive heteroatomic Co-Pr 

interactions in the binaries (72.4 % and 89.7% contribution to the total bonding in Co7Pr17 and 

Co2Pr5, respectively, with little homoatomic contributions, none for Co-Co in Co2Pr5. Introducing 

tin as a third component in the ternaries, heteroatomic Co–Sn (45.0%) and Sn–Pr (37.4%) 
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bonding interactions are dominant in CoSn3Pr, with a small contribution from Co-Pr interactions, 

subject to the long distances between these atoms (3.390 Å). Homoatomic Sn-Sn interactions 

play a surprising role, 12.0%. The electronic structures very nicely mimic the atomic 

arrangements in the four compounds of this study.  

 
Table 1. Crystallographic details and refinement parameters for Co7Pr17, Co2Pr5, CoSn3Pr1–x, 
(CoxSn1–x)2 Pr and Co2–xSn7Pr3. 

Formula Co7Pr17 Co2Pr5 CoSn3Pr0.96 Co1.22Sn7Pr3 
CCDC 1836697 1836695 1836694 1836696 
Structure type Own C2Mn5 Rh4Sn13Pr3 Ni2–xSn7–yCe3 
Form. wt., g/mol 2807.98 822.41 549.75 1325.28 

Space group, Z P213 (no. 198), 
4 C2/c (no. 15), 4 Pm n (no. 223), 

8 Cmmm (65), 2 

a, Å 13.4147(8) 16.5471(7) 9.587(3) 4.5043(4) 
b, Å  6.5107(3)  27.227(2) 
c, Å  7.1067(3)  4.5444(3) 
β, º  96.230(3)   
V [Å3] 2414.0(2) 761.11(7) 881.2(9) 557.32(8) 
Temperature, K 293(2) 293(2) 293(2) 293(2) 
Density (calculated), g/cm3 7.726 7.149 8.288 7.897 
Absorption coefficient, µ, mm-1 38.172 35.345 30.612 29.911 
F (000) 4768 1396 1867 1120 
θ range for data collection, ° 1.52 to 27.26 2.47 to 32.12 3.00 to 33.18 3.00 to 29.95 
Index ranges -17 < h < 17 -24 < h < 22 -7 < h < 13 -6 < h < 6 

 -17 < k < 17 -9 < k < 9 -11 < k < 14 -38 < k < 38 

 -17 < l < 17 -10 < l < 10 -14 < l < 14 -6 < l < 6 
Intensity data collected 37916 6828 8089 3058 
Number of independent 
reflections 

1804 [Rint = 
0.0979] 

1278 [Rint = 
0.0682] 

330 [Rint = 
0.0615] 

515 [Rint = 
0.0979] 

Completeness, % 99.1 99.9 100 99.1 
Flack parameter 0.00(1) – – – 
Data/ Restraints/ Parameters 1804/0/77 1278/0/33 330/0/14 515/0/32 
Goodness-of-fit (F2) 1.194 0.985 1.118 1.135 
R1, ωR2 [I0>2σ (I)] 0.0444; 0.1346 0.0381; 0.0648 0.0199; 0.0408 0.0208; 0.0454 
R1, ωR2 (all data) 0.0462; 0.1361 0.0591; 0.0697 0.0262; 0.0425 0.0226; 0.0461 

Largest diff. peak and hole [e/Å-3] 5.076 and –
2.097 

1.820 and –
1.993 

1.230 and –
1.183 

1.823 and –
1.291 
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Table 2. Atomic positions and equivalent thermal parameters for Co7Pr17 and Co2Pr5. 
Atomic parameters 

Atom Wyck. x y z Ueq 

Co7Pr17 

Co1 12b 0.1887(3) 0.3598(3) 0.3610(3) 0.0098(8) 

Co2 12b 0.0950(3) 0.5826(4) 0.1188(3) 0.0118(9) 
Co3 4a 0.1384(3) x x 0.0102(14) 

Pr1 12b 0.0109(2) 0.4928(2) 0.3168(2) 0.0247(5) 
Pr2 12b 0.0133(2) 0.3092(2) 0.4933(2) 0.0245(5) 

Pr3 12b 0.0661(2) 0.7441(2) 0.2552(2) 0.0260(6) 
Pr4 12b 0.1512(2) 0.1527(2) 0.3471(2) 0.0293(6) 

Pr5 12b 0.2576(2) 0.5630(2) 0.2600(2) 0.0244(5) 
Pr6 4a 0.5561(2) x x 0.0297(9) 

Pr7 4a 0.4019(2) x x 0.0308(9) 

Co2Pr5 

Co 8f 0.11003(9) 0.2080(2) 0.5749(2) 0.0238(3) 
Pr1 8f 0.21589(3) 0.06988(8) 0.31833(7) 0.0178(1) 

Pr2 8f 0.40637(3) 0.11154(8) 0.08556(7) 0.0186(1) 
Pr3 4e 0 0.0758(1) ¼ 0.0171(2) 
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Table 3. Atomic positions and equivalent thermal parameters for CoSn3Pr1–x and  
Co2–xSn7Pr3. 

Atomic parameters  

Atom Wyckoff x y z Ueq SOF 

CoSn3Pr1–x (x = 0.044)  

Co 8e ¼ ¼ ¼ 0.0073(2) 1 
Sn 24k 0 0.15689(4) 0.30330(4) 0.0134(1) 1 

Pr1 2a 0 0 0 0.0147(4) 0.825(5) 
Pr2 6c ¼ 0 ½ 0.0100(1) 1 

Co2–xSn7Pr3 (x = 0.782)  

Co 4i 0 0.12779(6) 0 0.0113(5) 0.609(6) 

Sn1 4j 0 0.09222(2) ½ 0.0141(1) 1 
Sn2 4i 0 0.40742(2) 0 0.0163(1) 1 

Sn3 4i 0 0.2182(2) 0 0.0116(5) 0.79(2) 
Sn4 4i 0 0.2061(5) 0 0.0116(5) 0.21(2) 

Sn5 2c ½ 0 ½ 0.0151(2) 1 
Pr1 4j 0 0.31416(2) ½ 0.0096(1) 1 

Pr2 2a 0 0 0 0.0087(1) 1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



www.manaraa.com

85 
 

 

Table 4. Bond length ranges and average −ICOHP values as well as total contributions to 
bonding interactions in Co7Pr17, Co2Pr5 and CoSn3Pr. 
Bond type Length  

(Å) 
Average  

length (Å) 
−ICOHP 

(eV/bond) 
no./cell −ICOHP 

 (eV/cell) 
Contribution  

(%) 
Co7Pr17 

Co−Co 2.257−3.944 3.601 0.24 24 5.705 1.9 
Co−Pr 2.811−3.689 3.039 0.83 256 212.5 72.4 
Pr−Pr 3.340−3.763 3.548 0.22 340 75.39 25.7 

Co2Pr5 
Co−Pr 2.727−3.586 3.008 1.16 76 57.44 87.9 
Pr−Pr 3.540−3.945 3.703 0.12 102 7.90 12.1 

CoSn3Pr 
Co−Sn 2.608 2.608 1.97 48 94.56 45.0 
Sn−Sn 3.008−3.772 3.431 0.30 84 25.14 12.0 
Sn−Pr 3.274−3.400 3.351 0.82 96 78.72 37.4 
Co–Pr 3.390 3.390 0.49 24 11.76 5.6 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



www.manaraa.com

86 
 

 

Associated content 

Supporting Information 

Structural data as CIF files. 

Accession Codes CCDC 1836694−1836697 contain the supplementary crystallographic data 
for this paper. These data can be obtained free of charge via 
www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by 
contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 
1EZ, UK; fax: +44 1223 336033. 

Author Information 

Corresponding Author 

*E-mail for GHM: ghmeyer@iastate.edu 

ORCID 
Volodymyr Smetana: 0000-0003-0763-1457 

Anja-Verena Mudring: 0000-0002-2800-1684 

Gerd H. Meyer: 0000-0003-1000-9001 

Notes 

The authors declare no competing financial interest. 

Acknowledgments 

Initial research by T. B. was supported by direct funds from the University of Cologne, Cologne, 
Germany. More recent research was supported by the Office of the Basic Energy Sciences, Materials 
Sciences Division, U. S. Department of Energy (DOE), and the Department of Chemistry at Iowa 
State University (ISU). Ames Laboratory is operated for DOE by ISU under contract No. DE-AC02-
07CH11358.  

 

References  

(1) Villars, P. (editor-in-chief), ASM Alloys Phase Diagram Center, Okamoto, H., 
Cenzual, K. (section editors), ASM International, Materials Park, Ohio, U.S.A., 2006-
2015. http://www1.asminternational.org/AsmEnterprise/APD. 



www.manaraa.com

87 
 

 

(2) Dasent, W. E. J. Chem. Educ. Non-existent compounds 1963, 40, 130. 

(3) Dasent, W. E. Nonexistent compounds: compounds of low stability; Dekker, M., Ed.; 
Marcel Dekker Inc.: New York, 1965. 

(4) Canepa, F.; Cirafici, S.; Fornasini, M. L.; Manfrinetti, P.; Merlo, F.; Palenzona, A.; 
Pani, M. J. Alloys Compd. Crystal structure of R3Co8Sn4 compounds (R=Pr, Nd, Sm, 
Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y) 2000, 297, 109-113. 

(5) He, W.; Zhang, J.; Yan, J.; Fu, Y.; Zeng, L. J. Alloys Compd. Crystal-structure and 
magnetic properties of the new ternary compound Pr117Co57Sn112 2010, 491, 49-52. 

(6) Mudryk, Y.; Manfrinetti, P.; Smetana, V.; Liu, J.; Fornasini, M. L.; Provino, A.; 
Pecharsky, V. K.; Miller, G. J.; Gschneidner, K. A. J. Alloys Compd. Structural 
disorder and magnetism in rare-earth (R) R117Co54+xSn112±y 2013, 557, 252-260. 

(7) Skolozdra, R.; IV, Y.; OE, K.; Aksel'rud, L. Dop. Akad. Nauk Ukrain RSR, Seriya B 
Crystallographic structure of RCo1.33Sn4.33 (R = La, Ce, Pr, Nd, Sm, Gd, Tb). 1983, 
6, 43-45. 

(8) François, M.; Venturini, G.; Malaman, B.; Roques, B. J. Less Common Met. 
Nouveaux isotypes de CeNiSi2 dans les systemes R-M-X (R ≡ La-Lu, M ≡ metaux 
des groupes 7 A 11 ET X ≡ Ge, Sn). I Compositions et parametres cristallins 1990, 
160, 197-213. 

(9) Pearson’s Handbook, Crystallographic Data for Intermetallic Phases, Desk edition, P. 
Villars, ASM International, The Materials Information Society, Materials Park, OH, 
1997. 

(10) Skolozdra, R.; Gorelenko, Y. K.; YE, T.; Tkachuk, V. Phys. Met. Metallogr. 
Influence of components on magnetic and electrokinetic properties and composition 
of compounds RMe1-xSn2-y 1988, 66, 26-33. 

(11) Meyer, G.; Dötsch, S.; Staffel, T. J. Less Common Met. The ammonium-bromide 
route to anhydrous rare earth bromides MBr3 1987, 127, 155-160. 

(12) WinXPow. Stoe & Cie GmbH, Darmstadt, Germany. 2004. 

(13) APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. 

(14) Krause, L.; Herbst-Irmer, R.; Sheldrick, G. M.; Stalke, D. J. Appl. Crystallogr. 
Comparison of silver and molybdenum microfocus X-ray sources for single-crystal 
structure determination 2015, 48, 3-10. 

(15) Sheldrick, G. Acta Crystallogr. Sect. A SHELXT - Integrated space-group and 
crystal-structure determination 2015, 71, 3-8. 



www.manaraa.com

88 
 

 

(16) Sheldrick, G. Acta Crystallogr. Sect. C: Struct. Chem. Crystal structure refinement 
with SHELXL 2015, 71, 3-8. 

(17) Tank, R.; Jepsen, O.; Burkhardt, A.; Andersen, O. K. TB-LMTO-ASA Program, Max-
Planck-Institut für Festkörperforschung, Stuttgart, Germany, 1994 

(18) Andersen, O. K.; Jepsen, O. Phys. Rev. Lett. Explicit, First-Principles Tight-Binding 
Theory 1984, 53, 2571-2574. 

(19) Lambrecht, W. R. L.; Andersen, O. K. Phys. Rev. B Minimal basis sets in the linear 
muffin-tin orbital method: Application to the diamond-structure crystals C, Si, and Ge 
1986, 34, 2439-2449. 

(20) Dronskowski, R.; Bloechl, P. E. J. Phys. Chem. Crystal orbital Hamilton populations 
(COHP): energy-resolved visualization of chemical bonding in solids based on 
density-functional calculations 1993, 97, 8617-8624. 

(21) Andriy, P.; Ingo, P.; Gerd, M. Z. Anorg. Allg. Chem. A Section Through the 
Compositional Triangle Pr‐Co‐I at 600 °C: Pr7CoI12 and Pr2Co2I 2006, 632, 1969-
1971. 

(22) Meyer, G. Symbiosis of Intermetallic and Salt: Rare-Earth Metal Cluster Complexes 
with Endohedral Transition Metal Atoms. Handbook on the Physics and Chemistry of 
Rare Earths. Elsevier, 2014, vol. 45, chapter 264, p. 111-178. 

(23) Llusar, R.; Corbett, J. D. Inorg. Chem. Reduced Praseodymium Cluster Bromides 
Stabilized by Transition Metals 1994, 33, 849-853. 

(24) Warkentin, E.; Simon, A. Rev. Chim. Miner. Gd3CCl3, ein metallisches 
Gadoliniumcarbidhalogenid 1983, 20, 488-495. 

(25) Fornasini, M. L.; Palenzona, A. J. Less Common Met. Crystal structure of the so-
called R.E.5Pd2 compounds 1974, 38, 77-82. 

(26) Yurko, G. A.; Barton, J. W.; Parr, J. G. Acta Crystallogr. The crystal structure of 
Ti2Ni 1959, 12, 909-911. 

(27) Bell, T.; Rhodehouse, M.; Smetana, V.; Mudring, A.-V.; Meyer, G. CGD The Hidden 
Island of Rare Earth rich intermetallics: Finding Access to ”Unexisting Polymorphs” 
2018, manuscript in preparation. 

(28) Bradley, A. J.; Gregory, C. H. The London, Edinburgh, and Dublin Philosophical 
Magazine and Journal of Science A comparison of the crystal structures of Cu5Zn8 
and Cu5Cd8 1931, 12, 143-162. 

(29) Rhodehouse, M.; Bell, T.; Smetana, V.; Mudring, A.-V.; Meyer, G. Inorg. Chem. 
From the “non-existent” polar intermetallic Pt3Pr4 via Pt2-xPr3 to some insight into 
Pt/Sn/Pr ternaries 2018, Submitted. 



www.manaraa.com

89 
 

 

(30) Le Roy, J.; Moreau, J.-M.; Paccard, D.; Parthe, E. Acta Crystallogr. Sect. B: Struct. 
Sci. R3T2 compounds (R = rare earth or Y; T = Rh, Pd, Pt) with the rhombohedral 
Er3Ni2 structure type 1977, 33, 2414-2417. 

(31) Olcese, G. L. J. Less Common Met. Crystal structure and magnetic properties of some 
7:3 binary phases between lanthanides and metals of the 8th group 1973, 33, 71-81. 

(32) Moreau, J. M.; Parthé, E. J. Less Common Met. Ferromagnetic Gd7Pd3 and other rare-
earth-palladium compounds with non-centrosymmetric Th7Fe3 structure 1973, 32, 91-
96. 

(33) Sologub, O.; Rogl, P.; Salamakha, L.; Bauer, E.; Hilscher, G.; Michor, H.; Giester, G. 
J. Solid State Chem. On phase equilibria and crystal structures in the systems Ce–Pd–
B and Yb–Pd–B. Physical properties of R2Pd13.6B5 (R=Yb, Lu) 2010, 183, 1013-
1037. 

(34) Iandelli, A.; Palenzona, A. J. Less Common Met. The europium-palladium system 
1974, 38, 1-7. 

(35) Moreau, J.-M.; Paccard, D. Acta Crystallogr. Sect. B: Struct. Sci. The monoclinic 
crystal structure of R5Co2 (R = Pr, Nd, Sm) with the Mn5C2 structure type 1976, 32, 
1654-1657. 

(36) P. K. Doye, J.; J. Wales, D. J. Chem. Soc., Faraday Trans. Structural consequences of 
the range of the interatomic potential A menagerie of clusters 1997, 93, 4233-4243. 

(37) Brandon, J. K.; Brizard, R. Y.; Chieh, P. C.; McMillan, R. K.; Pearson, W. B. Acta 
Crystallogr. B New refinements of the [gamma] brass type structures Cu5Zn8, Cu5Cd8 
and Fe3Zn10 1974, 30, 1412-1417. 

(38) Smetana, V.; Babizhetskyy, V.; Vajenine, G. V.; Hoch, C.; Simon, A. Inorg. Chem. 
Double-Icosahedral Li Clusters in a New Binary Compound Ba19Li44:  A 
Reinvestigation of the Ba−Li Phase Diagram 2007, 46, 5425-5428. 

(39) Smetana, V.; Babizhetskyy, V.; Hoch, C.; Simon, A. J. Solid State Chem. Icosahedral 
Li clusters in the structures of Li33.3Ba13.1Ca3 and Li18.9Na8.3Ba15.3 2007, 180, 3302-
3309. 

(40) Smetana, V.; Kienle, L.; Duppel, V.; Simon, A. Inorg. Chem. Synthesis, Crystal 
Structure, and TEM Analysis of Sr19Li44 and Sr3Li2: A Reinvestigation of the Sr–Li 
Phase Diagram 2015, 54, 733-739. 

(41) Smetana, V.; Babizhetskyy, V.; Vajenine, G. V.; Simon, A. Angew. Chem. Int. Ed. 
Li26 Clusters in the Compound Li13Na29Ba19 2006, 45, 6051-6053. 

(42) Taylor, M. Acta Crystallogr. The crystal structure of Mn3Al10 1959, 12, 393-396. 



www.manaraa.com

90 
 

 

(43) Solokha, P.; De Negri, S.; Pavlyuk, V.; Saccone, A. Inorg. Chem. Anti-Mackay 
Polyicosahedral Clusters in La−Ni−Mg Ternary Compounds: Synthesis and Crystal 
Structure of the La43Ni17Mg5 New Intermetallic Phase 2009, 48, 11586-11593. 

(44) Bergman, G.; Waugh, J. L. T.; Pauling, L. Acta Crystallogr. The crystal structure of 
the metallic phase Mg32(Al, Zn)49 1957, 10, 254-259. 

(45) Puselj, M.; Ban, Z. Croat. Chem. Acta The crystal structure of TiCuHg2 1969, 41, 79-
83. 

(46) Heusler, O. Annalen der Physik Kristallstruktur und Ferromagnetismus der Mangan-
Aluminium-Kupferlegierungen 1934, 411, 155-201. 

(47) Sprenger, H. J. Less Common Met. Die ternären systeme (Titan, Zirkonium, 
Hafnium)-kupfer-Silizium 1974, 34, 39-71. 

(48) Eisenmann, B.; Schäfer, H. J. Less Common Met. Käfigstrukturen in 
intermetallischen Verbindungen: zur Kenntnis von LaRuSn3, CeRuSn3, PrRuSn3 und 
NdRuSn3 1986, 123, 89-94. 

(49) Harmening, T.; Hermes, W.; Eul, M.; Pöttgen, R. Solid State Sci. Mixed valent 
stannide EuRuSn3 – Structure, magnetic properties, and Mössbauer spectroscopic 
investigation 2010, 12, 284-290. 

(50) Zhuravleva, M. A.; Bilc, D.; Mahanti, S. D.; Kanatzidis, M. G. Z. Anorg. Allg. Chem. 
Single Crystal X‐ray Structure Investigation and Electronic Structure Studies of 
La‐Deficient Nickel Stannide La4.87Ni12Sn24 Grown from Sn Flux 2003, 629, 327-
334. 

(51) Komarovskaya, L.; Skolozdra, R. Dop. Akad. Nauk Ukrain RSR, Seriya A The crystal 
structure of Gd3Ni8Sn16 and RNi3Sn2 (R = rare-earth element) compounds 1985, 47, 
81-83. 

(52) Romaka, V. V.; Hlil, E. K.; Romaka, L.; Gignoux, D.; Fruchart, D.; Horyn, A.; 
Miraglia, S. J. Alloys Compd. Crystallographic, magnetic and electrical characteristics 
of some R5−xNi12Sn24+x intermetallics 2010, 493, 35-40. 

(53) Schreyer, M.; Fässler, T. F. Solid State Sci. Ca7Co8Sn25–Ca3Co4Sn13 revised 2006, 8, 
793-797. 

(54) Mudryk, Y.; Grytsiv, A.; Rogl, P.; Dusek, C.; Galatanu, A.; Idl, E.; Michor, H.; 
Bauer, E.; Godart, C.; Kaczorowski, D.et al. J. Phys.-Condens. Matter Physical 
properties and superconductivity of skutterudite-related Yb3Co4.3Sn12.7 and 
Yb3Co4Ge13 2001, 13, 7391. 

(55) Weitzer, F.; Hiebl, K.; Rogl, P. J. Solid State Chem. Crystal chemistry and magnetism 
of neodymium stannides including compounds of the structural series REnSn3n−2 
1992, 98, 291-300. 



www.manaraa.com

91 
 

 

(56) Smetana, V.; Rhodehouse, M.; Meyer, G.; Mudring, A.-V. Acc. Chem. Res. Gold 
polar intermetallics: structural versatility through exclusive bonding motifs 2017, 50, 
2633-2641. 

(57) Karpov, A.; Nuss, J.; Wedig, U.; Jansen, M. Angew. Chem. Int. Ed. Cs2Pt: A 
Platinide(-II) Exhibiting Complete Charge Separation 2003, 42, 4818-4821. 

(58) Smetana, V.; Mudring, A.-V. Angew. Chem. Int. Ed. Cesium platinide hydride 
4Cs2Pt⋅CsH: an intermetallic double salt featuring metal anions 2016, 55, 14838-
14841. 

(59) Samal, S. L.; Corbett, J. D. Z. Anorg. Allg. Chem. Synthesis, structure, and bonding 
analysis of the polar Intermetallic phase Ca2Pt2Cd 2012, 638, 1963-1969. 

(60) Gulo, F.; Samal, S. L.; Corbett, J. D. Inorg. Chem. Substantial Cd–Cd bonding in 
Ca6PtCd11: a condensed intermetallic phase built of pentagonal Cd7 and rectangular 
Cd4/2Pt Pyramids 2013, 52, 10112-10118. 

(61) Samal, S. L.; Gulo, F.; Corbett, J. D. Inorg. Chem. Cluster chemistry in electron-poor 
Ae–Pt–Cd systems (Ae = Ca, Sr, Ba): (Sr,Ba)Pt2Cd4, Ca6Pt8Cd16, and its known 
antitype Er6Pd16Sb8 2013, 52, 2697-2704. 

(62) Smetana, V.; Steinberg, S.; Mudring, A.-V. Cryst. Growth Des. Layered Structures 
and Disordered Polyanionic Nets in the Cation-Poor Polar Intermetallics CsAu1.4Ga2.8 
and CsAu2Ga2.6 2017, 17, 693-700. 

(63) Smetana, V.; Corbett, J. D.; Miller, G. J. J. Solid State Chem. Na8Au9.8(4)Ga7.2 and 
Na17Au5.87(2)Ga46.63: The diversity of pseudo 5-fold symmetries in the Na–Au–Ga 
system 2013, 207, 21-28. 

(64) Provino, A.; Steinberg, S.; Smetana, V.; Kulkarni, R.; Dhar, S. K.; Manfrinetti, P.; 
Mudring, A.-V. J. Mat. Chem. C Gold-rich R3Au7Sn3: establishing the 
interdependence between electronic features and physical properties 2015, 3, 8311-
8321. 

(65) Provino, A.; Steinberg, S.; Smetana, V.; Paramanik, U.; Manfrinetti, P.; Dhar, S. K.; 
Mudring, A.-V. Cryst. Growth Des. Gold in the layered structures of R3Au7Sn3: from 
relativity to versatility 2016, 16, 5657-5668. 

(66) Lin, Q.; Smetana, V.; Miller, G. J.; Corbett, J. D. Inorg. Chem. Conventional and 
Stuffed Bergman-Type Phases in the Na–Au–T (T = Ga, Ge, Sn) Systems: Syntheses, 
Structures, Coloring of Cluster Centers, and Fermi Sphere–Brillouin Zone 
Interactions 2012, 51, 8882-8889. 

(67) Smetana, V.; Lin, Q.; Pratt Daniel, K.; Kreyssig, A.; Ramazanoglu, M.; Corbett John, 
D.; Goldman Alan, I.; Miller Gordon, J. Angew. Chem. Int. Ed. A Sodium‐Containing 
Quasicrystal: Using Gold To Enhance Sodium’s Covalency in Intermetallic 
Compounds 2012, 51, 12699-12702. 



www.manaraa.com

92 
 

 

CHAPTER 6. CONCLUSIONS 

Conclusion 

In this work we have added three new binary compounds, Pt3Pr4, Pt2–xPr3, and 

Co7Pr17 in the R/Pr phase diagrams. These phases have been synthesized via high 

temperature using PrCl3 or NaCl fluxes. Both Pt3Pr4 and Co7Pr17 crystallize in new structure 

types: the first a monoclinic structure with six crystallographically independent Pt positions 

and the later a cubic structure containing Co atoms with coordination numbers of eight and 

nine. In the case of Pt2–xPr3, calculations of total energy of the tetragonal Pt2Pr3 are higher 

than the previously reported rhombohedral Pt2Pr3 making the tetragonal phase 

thermodynamically unstable. Co7Pr17 also exhibits thermodynamic instability as it is also not 

shown in the phase diagram. The reported Co2Pr5 is very close in composition (~6% increase 

in Pr), however crystallizes in a different structure. 

With the introduction of a reactive tin flux the series Pt4Sn6R3 was formed for R =  

La–Nd, along with Pt4Sn6Pr2.91, Pt12Sn24Pr4.84 and two ternaries, CoSn3Pr1-x (x = 0.04) and 

Co2–xSn7Pr3 (x = 0.78), in the Co-Sn-Pr system. The Pt compounds crystallize in the 

Pt4Ge6R3 (R = Pr–Dy) structure type with the Pr and Nd analogs also forming a high 

temperature modification, Pt4Sn6R3-x. The modification crystallizes in same space group 

(Pnma) and cell volume but one elongated cell axis and reduced rare earth content, x = 0.09 

for Pr and x = 0.11 for Nd. Additionally, disorder on Pr and Sn sites is observed. In both 

modifications 5 and 6 membered rings of Pt and Sn form nets along one plane. In an attempt 

to expand the Pt4Sn6R3 family further Pt7Sn9Sm5 was formed and characterized as the rare 

Zr5Pd9P7 structure type. 
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In the ternaries, the first coordination sphere of Co atoms is Sn. Trigonal prisms of Sn 

surrounded Co, {CoSn6}, and {Pr1Sn12} icosahedra are observed in the RuSn3La-type 

CoSn3Pr1-x (x = 0.04,). Square pyramids, also of Sn surrounded Co, {CoSn5}, and {PrSn12} 

cuboctahedra define the crystal structure of Co2–xSn7Pr3 (Ni2–xSn7–yCe3 type). Homoatomic 

bonding in these binaries contributes little to the total while Sn-Sn interactions contribute a 

surprising 12% in the ternary compounds. The dominant heteroatomic bonding interactions 

are Co–Sn (45.0%) and Sn–Pr (37.4%) in CoSn3Pr. 

Future work 

During this work ternary compounds of non-targeted compositions were found. One 

example is that of Co3Pr4Sn5 = Pr(Co,Sn)2 (cP12, Pa, a = 6.678(3) Å, Z = 4). Initial findings 

show this compound to belong to the FeS2 family: the first intermetallic representative. The 

structure can be described as octahedra of Sn and Co around the Pr atoms. Each of the 

octahedra share all vertices with neighboring polyhedra in a canted pattern. Unlike that seen 

in the other reported ternary Co/Pr/Sn phases, the structure of Co3Pr4Sn5 contains a mixed 

position occupied by both Co and Sn. With only six ternaries reported there appears to be the 

possibility for further exploration of this system.  
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APPENDIX: SUPPLEMENTARY TABLES AND FIGURES  

 

 
Figure 1. Magnetization versus temperature for Co2Pr5 measured in an applied magnetic field of 
1 kOe between 2 and 250 K. Curie-Weiss fitting (top right inset) of magnetic field over 
magnetization curve versus 2-300 K temperature range.  

 
Figure 2. Magnetization versus temperature for Co2Pr5 measured in an applied magnetic field of 
1 kOe between 2 and 20 K. 
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